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This is the documentation for ARKODE, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge—Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKODE solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations
in serial, using shared-memory parallelism (via OpenMP, Pthreads, CUDA, Raja) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKODE is written in C, with C++ and Fortran interfaces.

ARKODE is developed by Southern Methodist University and Lawrence Livermore National Security, with support
by the US Department of Energy, Office of Science.
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Chapter 1

Introduction

The ARKODE infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKODE itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKODE is packaged with four time-stepping modules, ARKStep, ERKStep, SPRKStep, and
MRIStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

M)y =Pty + 1 (ty),  ylto) = o, (1.1)

where ¢ is the independent variable, y is the set of dependent variables (in R™V), M is a user-specified, nonsingular
operator from R to R”, and the right-hand side function is partitioned into up to two components:

 fE(t,y) contains the “nonstiff” time scale components to be integrated explicitly, and
s f1(t,y) contains the “stiff”” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge—Kutta methods. Such methods are defined
through combining two complementary Runge—Kutta methods: one explicit (ERK) and the other diagonally implicit
(DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components (1.1), such
methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed stiff/nonstiff
systems of ordinary differential equations. A key feature allowing for high efficiency of these methods is that only
the components in £ (¢, 3y) must be solved implicitly, allowing for splittings tuned for use with optimal implicit solver
algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKODE is
packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit methods
of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

ERKStep focuses specifically on problems posed in explicit form,

v =f(ty), y(to) = Yo- (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge—Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-8.

SPRKStep focuses on Hamiltonian systems posed in the form,

H(t,p,q) =T(t,p) +V(tq)
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. av(t,q) . orT'(t,p)

p f1(7Q) aq ’ q f2(ap) ap ) ( )
allowing for conservation of quadratic invariants.
MRIStep focuses specifically on problems posed in additive form,

g=foty) + 1ty + 1 (y),  ylto) = o (1.4)

where here the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step 1), and

» fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step h!" < ).

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step (MIS), multirate infinitesimal
GARK (MRI-GARK), and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods, allowing for evolution of the
problem (1.4) using multirate methods having orders of accuracy 2-4.

For ARKStep or MRIStep problems that include nonzero implicit term f7(¢,y), the resulting implicit system (assumed
nonlinear, unless specified otherwise) is solved approximately at each integration step, using a SUNNonlinearSolver
module, supplied either by the user or from the underlying SUNDIALS infrastructure. For nonlinear solver algorithms
that internally require a linear solver, ARKODE may use a variety of SUNLinearSolver modules provided with SUN-
DIALS, or again may utilize a user-supplied module.

1.1 Changes from previous versions

1.1.1 Changes in v5.6.0

A new time-stepping module, SPRKStep, was added to ARKODE. This time-stepper provides explicit symplectic par-
titioned Runge-Kutta methods up to order 10 for separable Hamiltonian systems.

Added support for relaxation Runge-Kutta methods in ERKStep and ARKStep, see §2.14, §5.3.3, and §5.2.3 for more
information.

Added the second order IMEX method from [40] as the default second order IMEX method in ARKStep. The explicit
table is given by ARKODE_ARK2_ERK_3_1_2 (see §15.1.2) and the implicit table by ARKODE_ARK2_DIRK_3_1_2 (see
§15.2.2).

Updated the default ARKODE behavior when returning the solution when the internal time has reached a user-specified
stop time. Previously, the output solution was interpolated to the value of tstop; the default is now to copy the internal
solution vector. Users who wish to revert to interpolation may call a new routine ARKStepSetInterpolateStop-
Time (), ERKStepSetInterpolateStopTime (), or MRIStepSetInterpolateStopTime ().

A potential bug was fixed when using inequality constraint handling and calling ARKStepGetEstLocalErrors() or
ERKStepGetEstLocalErrors() after a failed step in which an inequality constraint violation occurred. In this case,
the values returned by ARKStepGetEstLocalErrors() or ERKStepGetEstLocalErrors () may have been invalid.

Updated the F2003 utility routines SUNDITALSFileOpen() and SUNDIALSFileClose () to support user specification
of stdout and stderr strings for the output file names.

4 Chapter 1. Introduction
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1.1.2 Changes in v5.5.1

Added the functions ARKStepClearStopTime (), ERKStepClearStopTime (), and MRIStepClearStopTime () to
disable a previously set stop time.

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.
Fixed compilation errors in some SYCL examples when using the icx compiler.

The default interpolant in ARKODE when using a first order method has been updated to a linear interpolant to en-
sure values obtained by the integrator are returned at the ends of the time interval. To restore the previous behavior
of using a constant interpolant call ARKStepSetInterpolantDegree(), ERKStepSetInterpolantDegree(), or
MRIStepSetInterpolantDegree () and set the interpolant degree to zero before evolving the problem.

1.1.3 Changes in v5.5.0

Added the functions ARKStepGetJac(), ARKStepGetJacTime(), ARKStepGetJacNumSteps(), MRIStepGet-
Jac(), MRIStepGetJacTime (), and MRIStepGetJacNumSteps() to assist in debugging simulations utilizing a
matrix-based linear solver.

Added support for the SYCL backend with RAJA 2022.x.y.
Fixed an underflow bug during root finding.

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats () function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added support for CUDA v12.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

Fixed an implicit conversion error in the Butcher table for ESDIRK5(4)7L[2]SA2.

1.1.4 Changes in v5.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.1. Changes from previous versions 5
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1.1.5 Changes in v5.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections §9.10 and §10.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §8.14, §9.11, and §10.19 for more information.

Added the functions ARKStepSetTableName (), ERKStepSetTableName (), MRIStepCoupling_LoadTableBy-
Name (), ARKodeButcherTable_LoadDIRKByName (), and ARKodeButcherTable_LoadERKByName () to load a ta-
ble from a string.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed memory leaks/out of bounds memory accesses in the ARKODE MRIStep module that could occur when attaching
a coupling table after reinitialization with a different number of stages than originally selected.

1.1.6 Changes in v5.3.0

Added the functions ARKStepGetUserData(), ERKStepGetUserData(), and MRIStepGetUserData() to retrieve
the user data pointer provided to ARKStepSetUserData (), ERKStepSetUserData (), and MRIStepSetUserData(),
respectively.

Fixed a bug in ERKStepReset (), ERKStepReInit(), ARKStepReset (), ARKStepReInit (), MRIStepReset(),
and MRIStepReInit () where a previously-set value of zstop (from a call to ERKStepSetStopTime (), ARKStepSet-
StopTime (), or MRIStepSetStopTime (), respectively) would not be cleared.

Updated MRIStepReset () to call the corresponding MRIStepInnerResetFn with the same ({g,yr) arguments for
the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

Added a variety of embedded DIRK methods from [57] and [58].

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.1.7 Changes in v5.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated ARKStepSetDiagnostics(), MRIStepSetDiagnostics(), ERKStepSetDiagnostics(), SUN-
NonlinSolSetPrintLevel_Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNonlinSolSetPrint-
Level_FixedPoint (), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSetInfoFile_PCG(), SUN-
LinSolSetPrintLevel _PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSetPrintLevel_SPGMR(),

6 Chapter 1. Introduction
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SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLinSolSetInfoFile_SPT-
FQM(), SUNLinSolSetPrintLevel_SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(), SUNLinSolSetPrint-
Level_SPBCGS() it is recommended to use the SUNLogger API instead. The SUNLinSolSetInfoFile_** and
SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option SUNDIALS_LOG-
GING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

Added the functions ARKStepPrintAllStats(), ERKStepPrintAllStats(), and MRIStepPrintAll() to output
all of the integrator, nonlinear solver, linear solver, and other statistics in one call. The file scripts/sundials_csv.
py contains functions for parsing the comma-separated value output files.

Added the functions ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs () to optionally re-
move an evaluation of the implicit right-hand side function after nonlinear solves. See §2.11.1, for considerations on
using this optimization.

Added the function MRIStepSetOrder () to select the default MRI method of a given order.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

A bug was fixed in the functions ARKStepGetNumNonlinSolvConvFails (), ARKStepGetNonlinSolvStats(),
MRIStepGetNumNonlinSolvConvFails(), and MRIStepGetNonlinSolvStats() where the number of nonlinear
solver failures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed
with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure
was not included in the nonlinear solver failure count. These functions have been updated to return the total number of
nonlinear solver failures. As such users may see an increase in the number of failures reported.

The functions ARKStepGetNumStepSolveFails() and MRIStepGetNumStepSolveFails() have been added to
retrieve the number of failed steps due to a nonlinear solver failure. The counts returned from these functions will
match those previously returned by ARKStepGetNumNonlinSolvConvFails(), ARKStepGetNonlinSolvStats(),
MRIStepGetNumNonlinSolvConvFails(), and MRIStepGetNonlinSolvStats().

1.1.8 Changes in v5.1.1

Fixed exported SUNDIALSConfig.cmake.
Fixed Fortran interface to MRIStepInnerStepper and MRIStepCoupling structures and functions.

Added new Fortran example program, examples/arkode/F2003_serial/ark_kpr_mri_£2003.f90 demonstrat-
ing MRI capabilities.

1.1. Changes from previous versions 7
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1.1.9 Changes in v5.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.1.10 Changes in v5.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create () to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.
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The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials: :sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewlVithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

ARKODE

Removed

Replacement

SUNBandLinearSolver
SUNDenseLinearSolver
SUNKLU

SUNLinSol_Band()
SUNLinSol_Dense()
SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1l SUNLinSol_PCGSetMax1 ()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1l SUNLinSol_SPBCGSSetMaxl()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType ()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType ()

SUNSPFGMRSetMaxRestarts
SUNSPGMR

SUNLinSol_SPFGMRSetMaxRestarts()
SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1 ()
SUNSuperLUMT SUNLinSol_SuperLUMT ()

SUNSuperLUMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

The MRIStep module has been extended to support implicit-explicit (ImEx) multirate infinitesimal generalized ad-
ditive Runge—Kutta (MRI-GARK) methods. As such, MRIStepCreate() has been updated to include arguments
for the slow explicit and slow implicit ODE right-hand side functions. MRIStepCreate () has also been updated to
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require attaching an MRIStepInnerStepper for evolving the fast time scale. MRIStepReInit () has been similarly up-
dated to take explicit and implicit right-hand side functions as input. Codes using explicit or implicit MRI methods
will need to update MRIStepCreate() and MRIStepReInit () calls to pass NULL for either the explicit or implicit
right-hand side function as appropriate. If ARKStep is used as the fast time scale integrator, codes will need to call
ARKStepCreateMRIStepInnerStepper () to wrap the ARKStep memory as an MRIStepInnerStepper object. Ad-
ditionally, MRIStepGetNumRhsEvals () has been updated to return the number of slow implicit and explicit function
evaluations. The coupling table structure MRIStepCouplingMem and the functions MRIStepCoupling_Alloc() and
MRIStepCoupling_Create() have also been updated to support IMEX-MRI-GARK methods.

The deprecated functions MRIStepGetCurrentButcherTables and MRIStepWriteButcher and the utility func-
tions MRIStepSetTable and MRIStepSetTableNum have been removed. Users wishing to create an MRI-GARK
method from a Butcher table should use MRIStepCoupling_MIStoMRI() to create the corresponding MRI coupling
table and attach it with MRIStepSetCoupling().

The implementation of solve-decoupled implicit MRI-GARK methods has been updated to remove extraneous slow
implicit function calls and reduce the memory requirements.

The previously deprecated functions ARKStepSetMaxStepsBetweenLSet and ARKStepSetMaxStepsBetweenJac
have been removed and replaced with ARKStepSetLSetupFrequency () and ARKStepSetMaxStepsBetweenJac()
respectively.

The ARKODE Fortran 77 interface has been removed. See §4.5 and the F2003 example programs for more details
using the SUNDIALS Fortran 2003 module interfaces.

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name

realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST

BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH
MODIFIED_GS SUN_MODIFIED_GS
CLASSICAL_GS SUN_CLASSICAL_GS
ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn

DlsMat SUND1lsMat

DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM
SDIRK_2_1_2 ARKODE_SDIRK_2_1_2
BILLINGTON_3_3_2 ARKODE_BILLINGTON_3_3_2
TRBDF2_3_3_2 ARKODE_TRBDF2_3_3_2

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name

New Name

KVAERNO_4_2_3
ARK324L2SA_DIRK_4_2_3
CASH_5_2_4

CASH_5_3_4
SDIRK_5_3_4
KVAERNO_5_3_4
ARK436L2SA_DIRK_6_3_4
KVAERNO_7_4_5
ARK548L2SA_DIRK_8_4_
ARK437L2SA_DIRK_7_3_
ARK548L2SAb_DIRK_8_4
MIN_DIRK_NUM
MAX_DIRK_NUM
MIS_KW3
MRI_GARK_ERK33a
MRI_GARK_ERK45a
MRI_GARK_IRK21la
MRI_GARK_ESDIRK34a
MRI_GARK_ESDIRK46a
IMEX_MRI_GARK3a
IMEX_MRI_GARK3b
IMEX_MRI_GARK4
MIN_MRI_NUM
MAX_MRI_NUM

DEFAULT_MRI_TABLE_3

5
4

DEFAULT_EXPL_MRI_TABLE_3
DEFAULT_EXPL_MRI_TABLE_4
DEFAULT_IMPL_SD_TABLE_2
DEFAULT_IMPL_SD_TABLE_3
DEFAULT_IMPL_SD_TABLE_4
DEFAULT_IMEX_SD_TABLE_3
DEFAULT_IMEX_SD_TABLE_4

HEUN_EULER_2_1_2

BOGACKI_SHAMPINE_4_2_

ARK324L2SA_ERK_4_2_3
ZONNEVELD_5_3_4
ARK436L2SA_ERK_6_
SAYFY_ABURUB_6_3_
CASH_KARP_6_4_5
FEHLBERG_6_4_5
DORMAND_PRINCE_7_4_5
ARK548L2SA_ERK_8_4_5
VERNER_8_5_6
FEHLBERG_13_7_8
KNOTH_WOLKE_3_3
ARK437L2SA_ERK_7_3_4
ARK548L2SAb_ERK_8_4_5
MIN_ERK_NUM
MAX_ERK_NUM
DEFAULT_ERK_2

3_4
4

_5

3

ARKODE_KVAERNO_4_2_3
ARKODE_ARK324L2SA_DIRK_4_2_3
ARKODE_CASH_5_2_4
ARKODE_CASH_5_3_4
ARKODE_SDIRK_5_3_4
ARKODE_KVAERNO_5_3_4
ARKODE_ARK436L2SA_DIRK_6_3_4
ARKODE_KVAERNO_7_4_5
ARKODE_ARK548L2SA_DIRK_8 5
ARKODE_ARK437L2SA_DIRK_7_3_4
ARKODE_ARK548L2SAb_DIRK_8_4_5
ARKODE_MIN_DIRK_NUM
ARKODE_MAX_DIRK_NUM
ARKODE_MIS_KW3
ARKODE_MRI_GARK_ERK33a
ARKODE_MRI_GARK_ERK45a
ARKODE_MRI_GARK_IRK21la
ARKODE_MRI_GARK_ESDIRK34a
ARKODE_MRI_GARK_ESDIRK46a
ARKODE_IMEX_ MRI_GARK3a
ARKODE_IMEX_MRI_GARK3b
ARKODE_IMEX_MRI_GARK4
ARKODE_MIN_MRI_NUM
ARKODE_MAX_MRI_NUM
MRISTEP_DEFAULT_TABLE_3
MRISTEP_DEFAULT_EXPL_TABLE_3
MRISTEP_DEFAULT_EXPL_TABLE_4
MRISTEP_DEFAULT_IMPL_SD_TABLE_2
MRISTEP_DEFAULT_IMPL_SD_TABLE_3
MRISTEP_DEFAULT_IMPL_SD_TABLE_4
MRISTEP_DEFAULT_IMEX_SD_TABLE_3
MRISTEP_DEFAULT_IMEX_SD_TABLE_4
ARKODE_HEUN_EULER_2_1_2
ARKODE_BOGACKI_SHAMPINE_4_2
ARKODE_ARK324L2SA_ERK_4_2_3
ARKODE_ZONNEVELD_5_3_4
ARKODE_ARK436L2SA_ERK_6_
ARKODE_SAYFY_ABURUB_6_3_
ARKODE_CASH_KARP_6_4_5
ARKODE_FEHLBERG_6_4_5
ARKODE_DORMAND_PRINCE_7_4_5
ARKODE_ARK548L2SA_ERK_8_4_5
ARKODE_VERNER_8_5_6
ARKODE_FEHLBERG_13_7_8
ARKODE_KNOTH_WOLKE_3_3
ARKODE_ARK437L2SA_ERK_7_3_4
ARKODE_ARK548L2SAb_ERK_8_4_5
ARKODE_MIN_ERK_NUM
ARKODE_MAX_ERK_NUM
ARKSTEP_DEFAULT_ERK_2

_4_
3

_3

3_4
4

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name

New Name

DEFAULT_ERK_3
DEFAULT_ERK_4
DEFAULT_ERK_5
DEFAULT_ERK_6
DEFAULT_ERK_8
DEFAULT_DIRK_2
DEFAULT_DIRK_3
DEFAULT_DIRK_4
DEFAULT_DIRK_5
DEFAULT_ARK_ETABLE_3
DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ETABLE_5
DEFAULT_ARK_ITABLE_3
DEFAULT_ARK_ITABLE_4
DEFAULT_ARK_ITABLE_5
DEFAULT_ERK_2
DEFAULT_ERK_3
DEFAULT_ERK_4
DEFAULT_ERK_5
DEFAULT_ERK_6
DEFAULT_ERK_8

ARKSTEP_DEFAULT_ERK_3
ARKSTEP_DEFAULT_ERK_4
ARKSTEP_DEFAULT_ERK_5
ARKSTEP_DEFAULT_ERK_6
ARKSTEP_DEFAULT_ERK_8
ARKSTEP_DEFAULT_DIRK_2
ARKSTEP_DEFAULT_DIRK_3
ARKSTEP_DEFAULT_DIRK_4
ARKSTEP_DEFAULT_DIRK_5

ARKSTEP_DEFAULT_ARK_ETABLE_3
ARKSTEP_DEFAULT_ARK_ETABLE_4
ARKSTEP_DEFAULT_ARK_ETABLE_4
ARKSTEP_DEFAULT_ARK_ITABLE_3
ARKSTEP_DEFAULT_ARK_ITABLE_4
ARKSTEP_DEFAULT_ARK_ITABLE_5

ERKSTEP_DEFAULT_2
ERKSTEP_DEFAULT_3
ERKSTEP_DEFAULT_4
ERKSTEP_DEFAULT_5
ERKSTEP_DEFAULT_6
ERKSTEP_DEFAULT_8

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):
Deprecated Name New Name
DenseGETRF SUND1sMat_DenseGETRF
DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS
DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePQOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1sMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUND1sMat_denseScale
denseAddIdentity SUND1sMat_denseAddIdentity
DenseMatvec SUND1sMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF
BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS

continues on next page
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Table 1.2 — continued from previous page

Deprecated Name

New Name

BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1lsMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS
QRfact SUNQRFact

QRsol SUNQRsol

DlsMat_NewDenseMat
DlsMat_NewBandMat

SUND1sMat_NewDenseMat
SUND1sMat_NewBandMat

DestroyMat SUND1sMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1lsMat_NewIndexArray
NewRealArray SUNDlsMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1lsMat_PrintMat
newDenseMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUND1lsMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.1.11 Changes in v4.8.0

The RAJA NVECTOR implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §10.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess(), to indicate that the next
call to SUNLinSolSolve () will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty () constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

ARKODE now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUNLin-
earSolver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.
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Support for user-defined inner (fast) integrators has been to the MRIStep module. See §5.5.4 for more information on
providing a user-defined integration method.

Added the functions ARKStepSetN1sRhsFn() and MRIStepSetNIsRhsFn() to supply an alternative implicit right-
hand side function for use within nonlinear system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps () where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the ARKODE stepper modules where the stop time may be passed after resetting the integrator.

1.1.12 Changes in v4.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At
present the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §8.12 for more details. This
module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §10.8 for more details.

1.1.13 Changes in v4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.14 Changes in v4.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §8.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer (), was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer () operation, and that the pointer returned by N_VGetDeviceArrayPointer () is a valid CUDA device
pointer.
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1.1.15 Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.1.16 Changes in v4.4.0

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver. Fixed bug for ERK method integration with static mass
matrices.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [1] has been added to
enable parallel-in-time integration. See the §5.2.5 section for more information and the example codes in examples/
arkode/CXX_xbraid. This interface required the addition of three new N_Vector operations to exchange vector data
between computational nodes, see N_VBufSize (), N_VBufPack(), and N_VBufUnpack (). These N_Vector opera-
tions are only used within the XBraid interface and need not be implemented for any other context.

Updated the MRIStep time-stepping module in ARKODE to support higher-order MRI-GARK methods [74], including
methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

Added the functions ARKStepSetLSNormFactor (), ARKStepSetMassLSNormFactor (), and MRIStepSetLSNorm-
Factor () to specify the factor for converting between integrator tolerances (WRMS norm) and linear solver tolerances
(L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new reset functions ARKStepReset (), ERKStepReset (), and MRIStepReset () to reset the stepper time
and state vector to user-provided values for continuing the integration from that point while retaining the integration
history. These function complement the reinitialization functions ARKStepReInit (), ERKStepReInit (), and MRIS-
tepReInit () which reinitialize the stepper so that the problem integration should resume as if started from scratch.

Added new functions ARKStepComputeState(), ARKStepGetNonlinearSystemData(), MRIStepComputeS-
tate(), and MRIStepGetNonlinearSystemData () which advanced users might find useful if providing a custom
SUNNonlinSolSysFn().

The expected behavior of SUNNonlinSolGetNumIters () and SUNNonlinSolGetNumConvFails () inthe SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retrieved
by calling ARKStepGetNumNonlinSolvIters (), the cumulative number of failures with ARKStepGetNumNonlin-
SolvConvFails(), or both with ARKStepGetNonlinSolvStats().

A minor bug in checking the Jacobian evaluation frequency has been fixed. As a result codes using using a non-
default Jacobian update frequency through a call to ARKStepSetMaxStepsBetweenJac() will need to increase the
provided value by 1 to achieve the same behavior as before. Additionally, for greater clarity the functions ARKStepSet-
MaxStepsBetweenLSet () and ARKStepSetMaxStepsBetweenJac() have been deprecated and replaced with ARK-
StepSetLSetupFrequency () and ARKStepSetJacEvalFrequency () respectively.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.
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1.1.17 Changes in v4.3.0

Fixed a bug in ARKODE where the prototypes for ERKStepSetMinReduction() and ARKStepSetMinReduction()
were not included in arkode_erkstep.h and arkode_arkstep.h respectively.

Fixed a bug where inequality constraint checking would need to be disabled and then re-enabled to update the inequality
constraint values after resizing a problem. Resizing a problem will now disable constraints and a call to ARKStepSet-
Constraints() or ERKStepSetConstraints() is required to re-enable constraint checking for the new problem
size.

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added the optional function ARKStepSetJacTimesRhsFn () to specify an alternative implicit right-hand side function
for computing Jacobian-vector products with the internal difference quotient approximation.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

1.1.18 Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a bug in how ARKODE interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKODE
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Previ-
ously, ARKODE computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a similar bug in how ARKODE interfaces with scaled linear solvers when solving problems with non-identity
mass matrices. Here, the left scaling matrix should correspond with rwt and the right scaling matrix with ewt; these
were reversed but are now correct.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

The function ARKStepSetLinearSolutionScaling() was added to enable or disable the scaling applied to linear
system solutions with matrix-based linear solvers to account for a lagged value of  in the linear system matrix e.g.,
M —~J or I — ~J. Scaling is enabled by default when using a matrix-based linear solver.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change the mini-
mum allowed step size reduction factor after an error test failure.

Added a new SUNMatrix implementation, §9.7, that interfaces to the sparse matrix implementation from the NVIDIA
cuSPARSE library. In addition, the §10.17 SUNLinearSolver has been updated to use this matrix, as such, users of
this module will need to update their code. These modules are still considered to be experimental, thus they are subject
to breaking changes even in minor releases.

Added a new “stiff” interpolation module, based on Lagrange polynomial interpolation, that is accessible to each of the
ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide increased interpolation
accuracy when integrating stiff problems, as opposed to the ARKODE-standard Hermite interpolation module that can
suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite module remains the default, the
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new Lagrange module may be enabled using one of the routines ARKStepSetInterpolantType (), ERKStepSet-
InterpolantType(), or MRIStepSetInterpolantType(). The serial example problem ark_brusselator.c
has been converted to use this Lagrange interpolation module. Created accompanying routines ARKStepSetInter-
polantDegree(), ARKStepSetInterpolantDegree() and ARKStepSetInterpolantDegree() to provide user
control over these interpolating polynomials. While the routines ARKStepSetDenseOrder (), ARKStepSetDense-
Order () and ARKStepSetDenseOrder() still exist, these have been deprecated and will be removed in a future
release.

1.1.19 Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Fixed a bug in the Fortran 2003 interfaces to the ARKODE Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type(c_ptr) in Fortran.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file pointers that
are useful when using the Fortran 2003 interfaces.

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called affer any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStepStagePredictFn, and may
be set by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData () to attach their user data pointer to the
inner integrator memory as MRIStepSetUserData () will not set the pointer for both the inner and outer integrators.
The MRIStep examples have been updated to reflect this change.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module when using Anderson accel-
eration. See §11.4.1 and the SUNNonlinSolSetDamping_FixedPoint () for more details.

1.1.20 Changes in v4.0.0

Build system changes

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as SUN-
DIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to the BLAS
library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_LIBRARIES when
enabling SuperLU_DIST.

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.
NVECTOR module changes

Two new functions were added to aid in creating custom NVECTOR objects. The constructor N_VNewEmpty () al-
locates an “empty” generic NVECTOR with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the NVECTOR API by ensuring only required operations need to be set. Additionally,
the function N_VCopyOps () has been added to copy the operation function pointers between vector objects. When
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used in clone routines for custom vector objects these functions also will ease the introduction of any new optional
operations to the NVECTOR API by ensuring all operations are copied when cloning objects.

Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANY VECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accompanied
by additions to user documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the NVECTOR API.
The new required operation, N_VGetLength(), returns the global length of an N_Vector. The optional operations
have been added to support the new NVECTOR_MPIMANY VECTOR implementation. The operation N_VGetCom-
municator () must be implemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR,
but is not used outside of this context. The remaining nine operations are optional local reduction operations intended
to eliminate unnecessary latency when performing vector reduction operations (norms, etc.) on distributed memory
systems. The optional local reduction vector operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VMin-
Local (), N_VLINormLocal (), N_VWSqrSumLocal (), N_VWSqrSumMaskLocal (), N_VInvTestLocal(), N_VCon-
strMaskLocal (), and N_VMinQuotientLocal (). If an NVECTOR implementation defines any of the local oper-
ations as NULL, then the NVECTOR_MPIMANY VECTOR will call standard NVECTOR operations to complete the
computation.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X paradigm
where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied by additions to
user documentation and SUNDIALS examples.

The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_-
RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundi-
als_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users should use the
NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules
to replace the functionality. The necessary changes are minimal and should require few code modifications. See the
programs in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVECTOR_-
MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer.

Added new Fortran 2003 interfaces for most NVECTOR modules. See the §4.5 section for more details.

Added three new NVECTOR utility functions, N_VGetVecAtIndexVectorArray () N_VSetVecAtIndexVectorAr-
ray(), and N_VNewVectorArray (), for working with N_Vector arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor SUNMatNewEmpty ()
allocates an “empty” generic SUNMATRIX with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the SUNMATRIX API by ensuring only required operations need to be set. Additionally,
the function SUNMatCopyOps () has been added to copy the operation function pointers between matrix objects. When
used in clone routines for custom matrix objects these functions also will ease the introduction of any new optional
operations to the SUNMATRIX API by ensuring all operations are copied when cloning objects.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API. Users who have implemented cus-
tom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API to perform any setup necessary for
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computing a matrix-vector product. This operation is useful for SUNMATRIX implementations which need to prepare
the matrix itself, or communication structures before performing the matrix-vector product. Users who have imple-
mented custom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure
member, matvecsetup, to NULL.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations. Operations which
return an integer flag indiciating success/failure may return different values than previously.

A new SUNMATRIX (and SUNLINEARSOLVER) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See the §4.5 section for more details.
SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINEARSOLVER objects. The constructor SUNLinSol-
NewEmpty () allocates an “empty” generic SUNLINEARSOLVER with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNLINEARSOLVER API by ensuring only required
operations need to be set.

The return type of the SUNLINEARSOLVER API function SUNLinSolLastFlag() has changed from long int to
sunindextype to be consistent with the type used to store row indices in dense and banded linear solver modules.

Added a new optional operation to the SUNLINEARSOLVER API, SUNLinSolGetID(), that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

The SUNLINEARSOLVER API has been updated to make the initialize and setup functions optional.

A new SUNLINEARSOLVER (and SUNMATRIX) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

Added three new accessor functions to the SUNLinSol_KLU module, SUNLinSol_KLUGetSymbolic(), SUNLin-
Sol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon(), to provide user access to the underlying KLU solver
structures.

Added new Fortran 2003 interfaces for most SUNLINEARSOLVER modules. See the §4.5 section for more details.
SUNNonlinearSolver module changes

A new function was added to aid in creating custom SUNNONLINEARSOLVER objects. The constructor SUNNon-
linSolNewEmpty () allocates an “empty” generic SUNNONLINEARSOLVER with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNNONLINEARSOLVER API by ensuring
only required operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetConvTestFn()
function in the SUNNONLINEARSOLVER API has been updated to take a void* data pointer as input. The supplied
data pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () function in the SUNNONLINEAR-
SOLVER have been changed to be the predicted state and the initial guess for the correction to that state. Additionally,
the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn in the SUNNONLINEARSOLVER API
have been updated to remove unused input parameters.

Added a new SUNNonlinearSolver implementation, SUNNonlinsol_PetscSNES, which interfaces to the PETSc
SNES nonlinear solver API.
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Added new Fortran 2003 interfaces for most SUNNONLINEARSOLVER modules. See the §4.5 section for more
details.

ARKODE changes

The MRIStep module has been updated to support explicit, implicit, or InEx methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRIStepCreate () which now
takes an ARKStep memory structure for the fast integration as an input.

Fixed a bug in the ARKStep time-stepping module that would result in an infinite loop if the nonlinear solver failed to
converge more than the maximum allowed times during a single step.

Fixed a bug that would result in a “too much accuracy requested” error when using fixed time step sizes with explicit
methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a memeory leak in FARKODE when not using the default nonlinear solver.

The reinitialization functions ERKStepReInit (), ARKStepReInit (), and MRIStepReInit () have been updated to
retain the minimum and maxiumum step size values from before reinitialization rather than resetting them to the default
values.

Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries of the
vector-valued absolute tolerance array, are strictly positive. In this scenario, ARKODE will remove at least one global
reduction per time step.

The ARKLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian eval-
vation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function ARKLsLinSysFn () was added as an alternative method for evaluating the linear
system A = M — ~J.

Added two new embedded ARK methods of orders 4 and 5 to ARKODE (from [59]).

Support for optional inequality constraints on individual components of the solution vector has been added the
ARKODE ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints () and ARKStepSet-

Constraints() for more details. Note that enabling constraint handling requires the NVECTOR operations N_VMin-
Quotient (), N_VConstrMask(), and N_VCompare () that were not previously required by ARKODE.

Added two new ‘Get’ functions to ARKStep, ARKStepGetCurrentGamma (), and ARKStepGetCurrentState (), that
may be useful to users who choose to provide their own nonlinear solver implementation.

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn() for perform-
ing communication or memory transfers needed before or after the inner integration.

A new Fortran 2003 interface to ARKODE was added. This includes Fortran 2003 interfaces to the ARKStep, ERKStep,
and MRIStep time-stepping modules. See the §4.5 section for more details.
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1.1.21 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate interop-
erability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMem structure will need to update their code to use ARKODE’s public APL

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_Write when printing a Butcher table without an embedding.

1.1.22 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.23 Changes in v3.0.1

A bug in ARKODE where single precision builds would fail to compile has been fixed.

1.1.24 Changes in v3.0.0

The ARKODE library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality. To
support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping module.
Two new time-stepping modules have been added:

* The ERKStep module provides an optimized implementation for explicit Runge—Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

* The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing differ-
ent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines for
user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name of
time-stepping module (e.g., ARKStep or ERKStep) instead of ARKODE. Aside from affecting the names of these routines,
user-level changes have been kept to a minimum. However, we recommend that users consult both this documentation
and the ARKODE example programs for further details on the updated infrastructure.

As part of the ARKODE restructuring an ARKodeButcherTable structure has been added for storing Butcher ta-
bles. Functions for creating new Butcher tables and checking their analytic order are provided along with other utility
routines. For more details see $6.

Two changes were made in the initial step size algorithm:
* Fixed an efficiency bug where an extra call to the right hand side function was made.

¢ Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.
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ARKODE’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKODE’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into
a single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT
and ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes linear
solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implementations
are included in the chapter §10. All ARKODE examples programs and the standalone linear solver examples have been
updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their iout array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been updated to
follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names are SUN-
LinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense, SUN-
LinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUNLin-
Sol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges in user
migration to the new names, the previous routine names may still be used; these will be deprecated in future releases, so
we recommend that users migrate to the new names soon. All ARKODE example programs and the standalone linear
solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNON-
LINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in §11 and follow
the same object oriented design and implementation used by the N'Vector, SUNMatrix, and SUNLinSol modules. Cur-
rently two SUNNONLINSOL implementations are provided, SUNNonlinSol_Newton and SUNNonlinSol_FixedPoint.
These replicate the previous integrator specific implementations of a Newton iteration and an accelerated fixed-point
iteration, respectively. Example programs using each of these nonlinear solver modules in a standalone manner have
been added and all ARKODE example programs have been updated to use generic SUNNonlinSol modules.

As with previous versions, ARKODE will use the Newton solver (now provided by SUNNonlinSol_Newton) by default.
Use of the ARKStepSetLinear () routine (previously named ARKodeSetLinear) will indicate that the problem is
linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch to the accelerated
fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that to ARKODE, instead
of calling the previous ARKodeSetFixedPoint routine. See the documentation sections §5.2.1, §5.2.2.5, and §11.4
for further details, or the serial C example program ark_brusselator_£fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an NVector
(see §8.1 for more details). The new operations are intended to increase data reuse in vector operations, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with acceler-
ators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an NVector implementation defines any of these operations as NULL, then
standard NVector operations will automatically be called as necessary to complete the computation.

Multiple changes to the CUDA NVECTOR were made:

* Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

e Added N_VGetLocalLength_Cuda to return the local vector length.
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Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
e Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_-
OpenMPDEV. See §8.15 for more details.

1.1.25 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector data.

Fixed library installation path for multiarch systems. This fix changes the default library installation path to CMAKE_-
INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib. CMAKE_INSTALL_LIBDIR is au-
tomatically set, but is available as a CMAKE option that can modified.

1.1.26 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.
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¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.27 Changes in v2.1.2
Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally handle
the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The sum
now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient if the
user-supplied Jacobian routine allocates storage for the sum I + .J or M + ~J manually (with zero entries if needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.28 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKRelnit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used (to avoid
compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWirmsNormMask and revised the RAJA NVEC-
TOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one. Replaced
double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).
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1.1.29 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.1.30 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries.

Specific changes include:

* Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented APIL.

¢ Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK
dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented APIL

¢ Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

¢ Added Spils interface routines to ARKODE, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.
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Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing ENABLE_EXAMPLES to ENABLE_EXAMPLES_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing FOO_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.31 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.
The bugfixes include:

* For each linear solver, the various solver performance counters are now initialized to 0 in both the solver speci-
fication function and in the solver’s 1init function. This ensures that these solver counters are initialized upon
linear solver instantiation as well as at the beginning of the problem solution.

* The choice of the method vs embedding the Billington and TRBDF2 explicit Runge—Kutta methods were
swapped, since in those the lower-order coeflicients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

* A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

* A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running
with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the
embedding order was below 1.

* Numerous aspects of the documentation were fixed and/or clarified.
The feature changes/enhancements include:

» Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

¢ Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module name.

* A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces. In
addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

* The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and
corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR
format when using KLU.

e The ARKODE implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new
predictor approach was added, and the default choice was modified.
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1.2

The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR supported
by the KLU linear solver interface. ARKODE interfaces to the KLU solver from both C and Fortran were updated
to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

The missing ARKSpilsGetNumMtimesEvals() function was added — this had been included in the previous
documentation but had not been implemented.

The handling of integer codes for specifying built-in ARKODE Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to streamline
incorporation of new Butcher tables into ARKODE.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge—Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

In the next section we provide a thorough presentation of the underlying mathematical algorithms used within
the ARKODE family of solvers.

We follow this with an overview of how the source code for both SUNDIALS and ARKODE are organized.

The largest section follows, providing a full account of how to use ARKODE’s time-stepping modules, ARKStep,
ERKStep, and MRIStep, within C and C++ applications. This section then includes additional information on
how to use ARKODE from applications written in Fortran, as well as information on how to leverage GPU
accelerators within ARKODE.

A much smaller section follows, describing ARKODE’s Butcher table structure, that is used by both ARKStep
and ERKStep.

Subsequent sections discuss shared SUNDIALS features that are used by ARKODE: vector data structures,
matrix data Structures, linear S()IVL)I' dam Structures, nonlinear S()ZVL)I' dCl[[l Structures, memory managemem
utilities, and the installation procedure.

The final sections catalog the full set of ARKODE constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKODE.
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1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2023, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.
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Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
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Chapter 2

Mathematical Considerations

ARKODE solves ODE initial value problems (IVP) in RY posed in the form

Here, ¢ is the independent variable (e.g. time), and the dependent variables are given by y € RV, where we use the
notation ¢ to denote dy/dt.

For each value of ¢, M (t) is a user-specified linear operator from R” — R This operator is assumed to be nonsingular
and independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, M is typically the identity matrix, I. For PDEs using standard finite-element spatial semi-discretizations,
M is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed between spatial
rediscretization events).

The ODE right-hand side is given by the function f(¢,y) — in general we make no assumption that the problem (2.1)
is autonomous (i.e., f = f(y)) or linear (f = Ay). In general, the time integration methods within ARKODE support
additive splittings of this right-hand side function, as described in the subsections that follow. Through these splittings,
the time-stepping methods currently supplied with ARKODE are designed to solve stiff, nonstiff, mixed stiff/nonstiff,
and multirate problems. As per Ascher and Petzold [12], a problem is “stiff”’ if the stepsize needed to maintain stability
of the forward Euler method is much smaller than that required to represent the solution accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKODE. We first discuss the
“single-step” nature of the ARKODE infrastructure, including its usage modes and approaches for interpolated so-
lution output. We then discuss the current suite of time-stepping modules supplied with ARKODE, including the
ARKStep module for additive Runge—Kutta methods, the ERKStep module that is optimized for explicit Runge—Kutta
methods, and the MRIStep module for multirate infinitesimal step (MIS), multirate infinitesimal GARK (MRI-GARK),
and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods. We then discuss the adaptive temporal error controllers
shared by the time-stepping modules, including discussion of our choice of norms for measuring errors within various
components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKODE’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKODE'’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.
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2.1 Adaptive single-step methods

The ARKODE infrastructure is designed to support single-step, IVP integration methods, i.e.

Yn = P(Yn—1,hn)

where y,,_1 is an approximation to the solution y(¢,,_1), y,, is an approximation to the solution y(¢,,), t,, = tp—1+ hny,
and the approximation method is represented by the function ¢.

The choice of step size h,, is determined by the time-stepping method (based on user-provided inputs, typically accuracy
requirements). However, users may place minimum/maximum bounds on h,, if desired.

ARKODE’s time stepping modules may be run in a variety of “modes”:

* NORMAL - The solver will take internal steps until it has just overtaken a user-specified output time, toy, in
the direction of integration, i.e. t,_1 < tou < t, for forward integration, or t,, < ton < t,—1 for backward
integration. It will then compute an approximation to the solution (%o, ) by interpolation (using one of the dense
output routines described in the section §2.2).

* ONE-STEP - The solver will only take a single internal step y,,—1 — ¥, and then return control back to the
calling program. If this step will overtake ¢, then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution y,,.

* NORMAL-TSTOP — The solver will take internal steps until the next step will overtake ¢,,. It will then limit
this next step so that ¢, = t,_1 + h,, = tou, and once the step completes it will return a copy of the internal
solution ¥,.

¢ ONE-STEP-TSTOP - The solver will check whether the next step will overtake ¢, — if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that ¢,, = ¢,,_1 + h,, = tou. In either case,
once the step completes it will return a copy of the internal solution y,,.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKODE support interpolation of solutions y () and derivatives
y(d) (tout), Where toy occurs within a completed time step from ¢,,_1 — t,,. Additionally, this module supports extrap-
olation of solutions and derivatives for ¢ outside this interval (e.g. to construct predictors for iterative nonlinear and
linear solvers). To this end, ARKODE currently supports construction of polynomial interpolants p,(t) of polynomial
degree up to ¢ = 5, although users may select interpolants of lower degree.

ARKODE provides two complementary interpolation approaches, both of which are accessible from any of the time-
stepping modules: “Hermite” and “Lagrange”. The former approach has been included with ARKODE since its in-
ception, and is more suitable for non-stiff problems; the latter is a new approach that is designed to provide increased
accuracy when integrating stiff problems. Both are described in detail below.
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2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

Y= f(t,y), y(tO) = Yo-

we typically construct temporal interpolants using the data {y,,,_l, fn_l, Yns fn}, where here we use the simplified

notation fk to denote f (tx, yr). Defining a normalized “time” variable, 7, for the most-recently-computed solution
interval t,,_1 — t,, as

we then construct the interpolants p,(t) as follows:
* ¢ = 0: constant interpolant

n—1 1 Yn
P (T) Yn—1 Y )
*q= 1: linear Lagrange interpolant

Pi(T) = —TYn1+ (1 +7T)Yn.
* ¢ = 2: quadratic Hermite interpolant
p2(7) = T2 Y1 + (L= 7))y + (7 +7%) i
* q = 3: cubic Hermite interpolant
ps(r) = (372 + 2% g1 + (1= 372 = 27%) g + b (72 + 72) o1 + hn(7 + 272+ 7°) fo.
* q = 4: quartic Hermite interpolant

h .
pa(T) = (=672 — 167 — 974 yp_1 + (1 + 672 + 167> + 97%) y,, + f(—57’2 — 1473 — 97'4) fn_1

27hy,
4

+hn(7-+27—2+7-3) fn"’ (_7-4 —27° _7—2) fm

. . B, 1
where f, = f <tn 3P (—3) ) We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function f(¢, ), thereby increasing its cost in comparison with ps (¢).
* g = 5: quintic Hermite interpolant

ps(7) = (547° +1357* + 1107° 4 307°) yp—1 + (1 — 547° — 1357* — 1107° — 307°) yn,

h

n 5 2 N hn 5 2 A
+ 2 (277° + 6371 + 4973 +137%) f,_1 + 1(2770 + 727 + 6773 + 2672 + 1) £,

4
B oo 5 A f R
+ Z(81T° + 18974 + 13573 + 2772) f, + Z(sw + 21671 4 18973 + 5472) £,

L hin 1 . 2h,, 2
where f, = f (tn — ?,p4 (—3)) and fp = f (tn — 7’])4 (—3)). We point out that interpolation at
this degree requires four additional evaluations of the full right-hand side function f (t,y), thereby significantly

increasing its cost over py(t).

We note that although interpolants of order ¢ > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.
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2.2.2 Lagrange interpolation module

For stiff problems where f may have large Lipschitz constant, polynomial interpolants of Lagrange form are provided.
These interpolants are constructed using the data {y,, Yn—1,-..,Yn—r} Where 0 < v < 5. These polynomials have
the form

= Z Yn—;pi(t), where

Since we assume that the solutions y,,_; have length much larger than v < 5 in ARKODE-based simulations, we
evaluate p at any desired ¢ € R by first evaluating the Lagrange polynomial basis functions at the input value for ¢, and
then performing a simple linear combination of the vectors {y }%_,. Derivatives p(@ (t) may be evaluated similarly as

d
Pt Zyn 00 (),

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions increases
dramatically as the derivative order grows, our Lagrange interpolation module currently only provides derivatives up
tod = 3.

We note that when using this interpolation module, during the first (v — 1) steps of integration we do not have sufficient
solution history to construct the full v-degree interpolant. Therefore during these initial steps, we construct the highest-
degree interpolants that are currently available at the moment, achieving the full v-degree interpolant once these initial
steps have completed.

2.3 ARKStep - Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKODE is designed for IVPs of the form

M(t)y = fE(ty) + f1(ty),  ylto) = o, (2.2)
i.e. the right-hand side function is additively split into two components:
 fE(t,y) contains the “nonstiff” components of the system (this will be integrated using an explicit method);
* fI(t,y) contains the “stiff” components of the system (this will be integrated using an implicit method);
and the left-hand side may include a nonsingular, possibly time-dependent, matrix M (¢).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

g=fty) + f(ty),  ylte) = o, 2.3)
where fZ(t,y) = M(t)~! fE(t,y)and f1(t,y) = M(t)~' fT(t,y). ARKStep then utilizes variable-step, embedded,
additive Runge—Kutta methods (ARK), corresponding to algorithms of the form

i1
Zizynq-ﬁ-hnzz‘lfﬂm g %) T+ hn ZA ft nj, zj), i=1,...,s,

Y = Y1 + B Z(bEfE Fiz) + 0 FI L 7)) 24)

i=1

G = Yn1 + hn Z(bEfE B o) + Bt 2

i=1
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Here §,, are embedded solutions that approximate y(¢,,) and are used for error estimation; these typically have slightly
lower accuracy than the computed solutions ¥,,. The internal stage times are abbreviated using the notation tﬁ j =
th—1 + cf h,, and t{l’ j=tn-1+ ch. h,. The ARK method is primarily defined through the coefficients AE ¢ Rsxs,
Al e R*#, bF € R*, b € R*, ¢¥ € R® and ¢! € R, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b” € R® and b’ € R® are used to construct the embedding 7,,. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages,
s. We note that except when the problem has a time-independent mass matrix M, ARKStep allows the possibility for
different explicit and implicit abscissae, i.e. ¢ need not equal ¢’.

The user of ARKStep must choose appropriately between one of three classes of methods: ImEXx, explicit, and implicit.
All of the built-in Butcher tables encoding the coefficients cZ, ¢!, AF, AT bF, b’ bF and b’ are further described in
the section §15.

For mixed stiff/nonstiff problems, a user should provide both of the functions ¥ and f’ that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [56], allowing for methods having
order of accuracy ¢ = {3,4,5} and embeddings with orders p = {2, 3,4}; the tables for these methods are given in
section §15.3. Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f/ = 0, i.e. the equation (2.2) reduces to the non-split IVP

M@t)yy=f"(ty),  y(to) = o 2.5)

In this scenario, the coefficients AL = 0, ¢ = 0, b/ = 0 and b = 0 in (2.4), and the ARK methods reduce to
classical explicit Runge—Kutta methods (ERK). For these classes of methods, ARKODE provides coefficients with
orders of accuracy ¢ = {2, 3,4, 5, 6, 8}, with embeddings of orders p = {1, 2, 3,4, 5, 7}. These default to the methods
in sections §15.1.1, §15.1.3, §15.1.6, §15.1.10, §15.1.15, and §15.1.16, respectively. As with ARK methods, user-
defined ERK tables are supported.

Alternately, for stiff problems the user may specify that f¥ = 0, so the equation (2.2) reduces to the non-split IVP

M)y =f'(ty),  ylto) = o (2.6)

Similarly to ERK methods, in this scenario the coefficients A = 0, ¢ = 0, b® = 0 and b¥ = 0in (2.4), and the ARK
methods reduce to classical diagonally-implicit Runge—Kutta methods (DIRK). For these classes of methods, ARKODE
provides tables with orders of accuracy ¢ = {2, 3,4, 5}, with embeddings of orders p = {1, 2, 3,4}. These default to
the methods §15.2.1, §15.2.6, §15.2.9, and §15.2.14, respectively. Again, user-defined DIRK tables are supported.

2.4 ERKStep — Explicit Runge—Kutta methods

The ERKStep time-stepping module in ARKODE is designed for IVP of the form

y = f(tay)v y(tO) = Yo, (27)

i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,
M (t) = I) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge—Kutta methods (ERK), corresponding
to algorithms of the form

i—1
ZZ:ynfl'i_hnZAl,jf(tnjazj» 2'21,...,87

Jj=1

Yn =Yn-1+hn D _bif(tni, 2), (2.8)

i=1

s
gn = Yn—-1 + hn Z bif(tn,i7 Zi)v
i=1
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where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is similarly
encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve every
problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module
since this simplified form admits a more efficient and memory-friendly implementation than the more general form
2.7).

2.5 SPRKStep — Symplectic Partitioned Runge-Kutta methods

The SPRKStep time-stepping module in ARKODE is designed for IVPs of the form

oV (t oT(t
p = fl(t7Q) = G(q,Q)7 q = f2(t7p) = a(Z;p)a p(to) = Do, q(tO) = qo, (29)

where the system Hamiltonian
H(t,p,q) =T(t,p) + V(t,q)

is separable. When H is autonomous, then H is a conserved quantity. Often this correponds to the conservation of
energy (for example, in n-body problems). For non-autonomous H, the invariants are no longer directly obtainable
from the Hamiltonian [85].

In solving the IVP (2.9), we consider the problem in the form

. |[fitq) Po

y {fz(t,p) oyl =
In practice, the ordering of the variables does not matter and is determined by the user. SPRKStep utilizes Symplectic
Partitioned Runge-Kutta (SPRK) methods represented by the pair of explicit and diagonally implicit Butcher tableaux,

c| 0 - 0 0 éila --- 0 0

Co | a1 0 ce . 62 dl dg

Cs | Q1 e Qg—1 0 és &1 &2 s ds
ai -+ Qs—1 Qs ap a as

These methods approximately conserve a nearby Hamiltonian for exponentially long times [46]. SPRKStep makes
the assumption that the Hamiltonian is separable, in which case the resulting method is explicit. SPRKStep provides
schemes with order of accuracy and conservation equal to ¢ = {1,2,3,4,5,6,8,10}. The references for these these
methods and the default methods used are given in the section §15.4.

In the default case, the algorithm for a single time-step is as follows (for autonomous Hamiltonian systems the times
provided to f1 and f2 can be ignored).

1. Set By = pn, Q1 = gn
2. Fori=1,...,sdo:
1. P =P 1+ hpp1Gi f1(tn + éih, Qi)
2. Qi1 = Qi + hysraifotn + i, P;)
3. Setpry1 = Py, qni1 = Qsi1

Optionally, a different algorithm leveraging compensated summation can be used that is more robust to roundoff error
at the expense of 2 extra vector operations per stage and an additional 5 per time step. It also requires one extra vector to
be stored. However, it is signficantly more robust to roundoff error accumulation [83]. When compensated summation
is enabled, the following incremental form is used to compute a time step:
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1. Set APy =0,AQ1 =0
2. Fori=1,...,sdo:
1. AP, = AP,y + hpt1a; f1(tn + Gl qn + AQ;)
2. AQit1 = AQ; + hpy1a; fa(tn + cih,pn + AP)
3. Set Appi1 = AP, Agni1 = AQs 1
4. Using compensated summation, set pp+1 = Pp, + APn+1, @nt1 = Gn + AQs11

Since temporal error based adaptive time-stepping is known to ruin the conservation property [46], SPRKStep employs
a fixed time-step size.

2.6 MRIStep — Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKODE is designed for IVPs of the form

y=rf"y) + ity + M (ty),  ylte) = vo. (2.10)

i.e., the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff”” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step 2°), and

 fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step A" < h°).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, M (t) = I. The
slow time scale may consist of only nonstiff terms (f! = 0), only stiff terms (f¥ = 0), or both nonstiff and stiff terms.

For cases with only a single slow right-hand side function (i.e., f¥ = 0 or f/ = 0), MRIStep provides fixed-slow-step
multirate infinitesimal step (MIS) [76, 77, 78] and multirate infinitesimal GARK (MRI-GARK) [74] methods. For
problems with an additively split slow right-hand side MRIStep provides fixed-slow-step implicit-explicit MRI-GARK
(IMEX-MRI-GARK) [27] methods. The slow (outer) method derives from an s stage Runge—Kutta method for MIS and
MRI-GARK methods or an additive Runge—Kutta method for IMEX-MRI-GARK methods. In either case, the stage
values and the new solution are computed by solving an auxiliary ODE with a fast (inner) time integration method.
This corresponds to the following algorithm for a single step:

1. Set 21 = Yn—1-
2. Fori=2,...,s+1do:
1. Let ti,i—l =tn_1+ C%g_lhs and ’U(tfz,i—l) = Zi_1.

i

i1
2. Letr(t) = 2= > wi i (T) [P, 5, 25) + =5 2. Yij (1) (t] ;5 2;) where Acf = (¢ — 5 ) and the
i =1 i =1

)/(hAc?).

3. Fort € [t¥, |, t3 ]solve o(t) = fF(t,v) +ri(t).

n,i—17“n,i

5

normalized timeis 7 = (t — ¢ ,_;

4. Setz; = (s ;).

3. Sety, = 2s41-
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The fast (inner) IVP solve can be carried out using either the ARKStep module (allowing for explicit, implicit, or ImEx
treatments of the fast time scale with fixed or adaptive steps), or a user-defined integration method (see section §5.5.4).

The final abscissa is ¢ 1 = 1 and the coeflicients w; ; and -y; ; are polynomials in time that dictate the couplings from
the slow to the fast time scale; these can be expressed as in [27] and [74] as

k k
) = Tl and 2is(r) = "
k>0 k>0

and where the tables Q{*} € R+ x(s+1) apd Tk} ¢ R(5+1)x(s+1) define the slow-to-fast coupling for the explicit
and implicit components respectively.

For traditional MIS methods, the coupling coefficients are uniquely defined based on a slow Butcher table (A%, b, ¢%)
having an explicit first stage (i.e., ¢; = 0 and Afyj =0for1 < j < s), sorted abscissae (i.e., ¢ > ¢ | for2 <i < s),
and the final abscissa is ¢ < 1. With these properties met, the coupling coefficients for an explicit-slow method are
given as

0, ifi =1,
wz{g} = AiS,j - Aistj: if2 <4 <s, (2.12)
by — A7, ifi=s+1.

For general slow tables (A, %, ¢¥) with at least second-order accuracy, the corresponding MIS method will be second
order. However, if this slow table is at least third order and satisfies the additional condition

1 1
> (ef =) (e +ei)T AT + (1-¢f) (2 + eSTAScS> =3 (2.13)

=2

where e; corresponds to the j-th column from the s x s identity matrix, then the overall MIS method will be third
order.

In the above algorithm, when the slow (outer) method has repeated abscissa, i.e. Acis = 0 for stage 14, the fast (inner)
IVP can be rescaled and integrated analytically. In this case the stage is computed as

i—1 {k} i {k}
Wi g Yi.j
zi=zi1+h%y T | o)+ hf > el ERGHRTENE (2.14)
j=1 \ k>0 j=1 \ k>0

which corresponds to a standard ARK, DIRK, or ERK stage computation depending on whether the summations over
k are zero or nonzero.

As with standard ARK and DIRK methods, implicitness at the slow time scale is characterized by nonzero values
on or above the diagonal of the matrices I't*}. Typically, MRI-GARK and IMEX-MRI-GARK methods are at most
diagonally-implicit (i.e., wi];} = 0 for all j > ¢). Furthermore, diagonally-implicit stages are characterized as being
“solve-decoupled” if Acis = 0 when gamma_{i,i}*{{k}} ne 0, in which case the stage is computed as standard ARK or

DIRK update. Alternately, a diagonally-implicit stage ¢ is considered ““solve-coupled” if Acis fyi{,};} # 0, in which case
the stage solution z; is both an input to 7(¢) and the result of time-evolution of the fast IVP, necessitating an implicit
solve that is coupled to the fast (inner) solver. At present, only “solve-decoupled” diagonally-implicit MRI-GARK and
IMEX-MRI-GARK methods are supported.

For problems with only a slow-nonstiff term (f! = 0), MRIStep provides third and fourth order explicit MRI-GARK
methods. In cases with only a slow-stiff term (f¥ = 0), MRIStep supplies second, third, and fourth order implicit
solve-decoupled MRI-GARK methods. For applications with both stiff and nonstiff slow terms, MRIStep implements
third and fourth order IMEX-MRI-GARK methods. For a complete list of the methods available in MRIStep see
§5.5.3.2. Additionally, users may supply their own method by defining and attaching a coupling table, see §5.5.3 for
more information.
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2.7 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKODE use a weighted root-mean-square norm, denoted || - ||wrwms, for all error-like quantities,

L 1/2
2
lv]|wrms = (N;(vi w;) ) i (2.15)

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

w; = (RTOL~ [Yn—1,i| + ATOLi)_l. (2.16)

Since 1/w; represents a tolerance in the i-th component of the solution vector gy, a vector whose WRMS norm is
1 is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

w; = (RTOL~ |(M(tn-1)yn-1),| +ATOL;)_1, (2.17)

where the user may specify a separate absolute residual tolerance value or array, ATOL’. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.16),
whereas values having “equation” units use (2.17). Obviously, for problems with M = I, the solution and equation
units are identical, in which case the solvers in ARKODE will use (2.16) when computing all error norms.

2.8 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error test
fails, then the step is recomputed with a reduced step size. To this end, the Runge—Kutta methods packaged within both
the ARKStep and ERKStep modules admit an embedded solution ,,, as shown in equations (2.4) and (2.8). Generally,
these embedded solutions attain a slightly lower order of accuracy than the computed solution y,,. Denoting the order
of accuracy for y,, as ¢ and for ¢,, as p, most of these embedded methods satisfy p = ¢ — 1. These values of ¢ and p
correspond to the global orders of accuracy for the method and embedding, hence each admit local truncation errors
satisfying [44]

lyn = y(ta)ll = CET + O(RET),

7 (2.18)
1Gn — y(tn)|| = DRETT + O(REF?),

where C' and D are constants independent of h,,, and where we have assumed exact initial conditions for the step, i.e.
Yn—1 = Y(t,—1). Combining these estimates, we have

||yn - gn“ = ”yn —y(tn) — Un + y(tn)” < lyn — y(tn)H + ”gn —y(ta)| < Dh:;)z—H + O(hﬁ+2).

We therefore use the norm of the difference between y,, and ¥, as an estimate for the LTE at the step n

Ty = By — ) = B Y [ (F —F) 720 ) + (b1 =B (e 020 2.19)
i=1
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for ARK methods, and similarly for ERK methods. Here, 8 > 0 is an error bias to help account for the error constant
D; the default value of this constant is 3 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ||T;,|| < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to determine the next
step size, the algorithms used for this purpose are described in §2.8. If the error test fails, the step is rejected and a
new step size b’ is then computed using the same error controller as for successful steps. A new attempt at the step is
made, and the error test is repeated. If the error test fails twice, then h’/h is limited above to 0.3, and limited below to
0.1 after an additional step failure. After seven error test failures, control is returned to the user with a failure message.
We note that all of the constants listed above are only the default values; each may be modified by the user.

We define the step size ratio between a prospective step h’ and a completed step h as 7, i.e. n = h’/h. This value is
subsequently bounded from above by 7. to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

etamx|1, on the first step (default is 10000),
Nmax = { growth, on general steps (default is 20),
1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

hO supplied?

compute hO to
approximately solve

1h0r2 y” 1< 2

if (nst==0): h =h0
else: h=h*eta

attempt step

etamax = 1

nel=nel + 1

if (h==hmin or ncf==maxncf): halt
eta = max(etacf, hmin/h)

i —h#*
estimate error: h=h*eta

dsm = lly_errorll

etamax = 1

nef = nef + 1

if (h==hmin or nef==maxnef): halt

eta = arkAdapt(h, hl, h2, dsm, el, €2)

il (nef >= small_nel): eta = max(ela, etamx[)
h=h*eta

nst=nst+ 1

if (ctamax==1): ecta=1

eta = arkAdapt(h, h1, h2, dsm, el, e2)
h2=hl

hi=h

c2=cl

el = dsm * bias

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when 1 € [n,ny]. The default values for this
interval are 77, = 1 and 7y = 1.5, and may be modified by the user.

We note that any choices for 7 (or equivalently, k") are subsequently constrained by the optional user-supplied bounds
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hmin and hpmax. Additionally, the time-stepping algorithms in ARKODE may similarly limit 4’ to adhere to a user-
provided “TSTOP” stopping point, #op.

The time-stepping modules in ARKODE adapt the step size in order to attain local errors within desired tolerances of
the true solution. These adaptivity algorithms estimate the prospective step size h’ based on the asymptotic local error
estimates (2.18). We define the values ¢,,, €,,_1 and &,,_5 as

e = Tkl = Bllyr — grll;

corresponding to the local error estimates for three consecutive steps, t,—3 — t,—o — t,—1 — t,. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKODE supports
a variety of error control algorithms, as specified in the subsections below.

2.8.1 PID controller

This is the default time adaptivity controller used by the ARKStep and ERKStep modules. It derives from those found
in [56], [80], [81] and [82], and uses all three of the local error estimates ¢,,, £,,—1 and €,,_o in determination of a
prospective step size,

r_ —k1/p _k2/p _—k3/p
h = hﬂ/gn €n-1 €n—2 >

where the constants k1, ko and k3 default to 0.58, 0.21 and 0.1, respectively, and may be modified by the user. In this
estimate, a floor of ¢ > 10710 is enforced to avoid division-by-zero errors.

2.8.2 PI controller

Like with the previous method, the PI controller derives from those found in [56], [80], [81] and [82], but it differs in
that it only uses the two most recent step sizes in its adaptivity algorithm,

;o —ki/p _k2/p
B = hy, eyt /PP,

Here, the default values of k; and ko default to 0.8 and 0.31, respectively, though they may be changed by the user.

2.8.3 1 controller

This is the standard time adaptivity control algorithm in use by most publicly-available ODE solver codes. It bases the
prospective time step estimate entirely off of the current local error estimate,

W o= hy,e*/P.

By default, k; = 1, but that may be modified by the user.

2.8.4 Explicit Gustafsson controller

This step adaptivity algorithm was proposed in [42], and is primarily useful with explicit Runge—Kutta methods. In the
notation of our earlier controllers, it has the form

h1 sl_l/p, on the first step,

= ha/p (2.20)
hy en fa/p <€n> , on subsequent steps.

En—1

The default values of k; and k9 are 0.367 and 0.268, respectively, and may be modified by the user.
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2.8.5 Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge—Kutta methods was introduced in [43], and has the form

hlsfl/p, on the first step,
B = h —k2/p (2.21)
b ( e ) enka/p <€"> . onsubsequent steps.
hnfl En—1

The algorithm parameters default to k; = 0.98 and ke = 0.95, but may be modified by the user.

2.8.6 ImEx Gustafsson controller

An ImEX version of these two preceding controllers is also available. This approach computes the estimates h} arising
from equation (2.20) and the estimate k), arising from equation (2.21), and selects

h
h = 7 min {|R}], [R5}
Here, equation (2.20) uses k; and ko with default values of 0.367 and 0.268, while equation (2.21) sets both parameters
to the input k3 that defaults to 0.95. All of these values may be modified by the user.

2.8.7 User-supplied controller

Finally, ARKODE’s time-stepping modules allow the user to define their own time step adaptivity function,
h/ = H(ya t7 hn7 hn—la hn—27 EnyEn—1,En—2, Qap)7

to allow for problem-specific choices, or for continued experimentation with temporal error controllers.

2.9 Explicit stability

For problems that involve a nonzero explicit component, i.e. f¥(¢,%) # 0 in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge—Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKODE adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which f¥(¢,%) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error toler-
ances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable number
of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller may
also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(hn ) must reside within a bounded stability region, where ) are the eigenvalues of the linearized operator 91 /3y,
information on the maximum stable step size is not readily available to ARKODE’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation f! may contain the stiff diffusive components and f¥ may contain the compara-
bly nonstiff advection terms. In this scenario, an explicitly stable step hex, would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

Az
[Pexp| < —

where Az is the spatial mesh size and ) is the fastest advective wave speed.
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In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|. If a value for
|hexp| is supplied, it is compared against the value resulting from the local error controller, ||, and the eventual time
step used will be limited accordingly,

h
I T min{c |hexp|, |hace|}-

Here the explicit stability step factor ¢ > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.

2.10 Fixed time stepping

While both the ARKStep and ERKStep time-stepping modules are designed for tolerance-based time step adaptivity,
they additionally support a “fixed-step” mode. This mode is typically used for debugging purposes, for verification
against hand-coded Runge—Kutta methods, or for problems where the time steps should be chosen based on other
problem-specific information. In this mode, all internal time step adaptivity is disabled:

* temporal error control is disabled,
* nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),

* no check against an explicit stability condition is performed.

Note: Since temporal error based adaptive time-stepping is known to ruin the conservation property of SPRK methods,
SPRKStep employs a fixed time-step size by default.

Note: Fixed-step mode is currently required for the slow time scale in the MRIStep module.

Additional information on this mode is provided in the sections ARKStep Optional Inputs, ERKStep Optional Inputs,
SPRKStep Optional Inputs, and MRIStep Optional Inputs.

2.11 Algebraic solvers

When solving a problem involving either an implicit component (e.g., in ARKStep with f’ (t,y) # 0, or in MRIStep
with a solve-decoupled implicit slow stage), or a non-identity mass matrix (M (t) # I in ARKStep), systems of linear
or nonlinear algebraic equations must be solved at each stage and/or step of the method. This section therefore focuses
on the variety of mathematical methods provided in the ARKODE infrastructure for such problems, including nonlin-
ear solvers, linear solvers, preconditioners, iterative solver error control, implicit predictors, and techniques used for
simplifying the above solves when using different classes of mass-matrices.

2.11.1 Nonlinear solver methods

For the DIRK and ARK methods corresponding to (2.2) and (2.6) in ARKStep, and the solve-decoupled implicit slow
stages (2.14) in MRIStep, an implicit system

G(z) =0 (2.22)

must be solved for each implicit stage z;. In order to maximize solver efficiency, we define this root-finding problem
differently based on the type of mass-matrix supplied by the user.
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* In the case that M = I within ARKStep, we define the residual as
G(z) =2z — hp AI f (m,z)—ai, (2.23)

where we have the data

A = Yn— 1+hz njv )+AIf(n]7Z)]

* In the case of non-identity mass matrix M # I within ARKStep, but where M is independent of ¢, we define
the residual as

G(zi) = Mz — hy AL f1(th 5. 2) — ai, (2.24)

where we have the data

1—1
a;i = Myn_y+ho Y [AF FE@E 25) + AL (8 5, 25)]
j=1

Note: This form of residual, as opposed to G(z;) = z; — hnAI L n.i» 7i) —a; (with a; defined appropriately),

removes the need to perform the nonlinear solve with right-hand side function f I = M1 fI, as that would
require a linear solve with M at every evaluation of the implicit right-hand side routine.

* In the case of ARKStep with M dependent on ¢, we define the residual as
G(zi) = M(t] )z — a;) — hy AL f1 (), 4, 1) (2.25)

where we have the data

%_%1+m§j PR 51 23) + AL (8 20)|

Note: As above, this form of the residual is chosen to remove excessive mass-matrix solves from the nonlinear
solve process.

 Similarly, in MRIStep (that always assumes M = I), we have the residual

{k}
G(Z;) =Z; — hS i Tt fl(tgi, Zi) —a; =0 (2.26)
E+1 ’
k>0
where
i1 7{k}
_ s g | el
ai:Z¢—1+hZ 11 FIE 5 2).
j=1 \ k>0
E I
Upon solving for z;, method stages must store f (£ 39 2;) and f1(t] _j»#i)- Itis possible to compute the latter without

evaluating f7 after each nonlinear solve. Consider, for example, (2.23) which implies

Zi — Qg

h, AL,

ll

Ity z) = (2.27)

44 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v5.6.0

when z; is the exact root, and similar relations hold for non-identity mass matrices. This optimization can be enabled by
ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs () with the second argument in either
function set to SUNTRUE. Another factor to consider when using this option is the amplification of errors from the
nonlinear solver to the stages. In (2.27), nonlinear solver errors in z; are scaled by 1/ (hT,AZIZ) By evaluating f! on
z;, errors are scaled roughly by the Lipshitz constant L of the problem. If h,, A{ﬁiL > 1, which is often the case when
using implicit methods, it may be more accurate to use (2.27). Additional details are discussed in [79].

In each of the above nonlinear residual functions, if f?(t,y) depends nonlinearly on 3 then (2.22) corresponds to a
nonlinear system of equations; if instead f7(¢,y) depends linearly on ¥ then this is a linear system of equations.

To solve each of the above root-finding problems ARKODE leverages SUNNonlinearSolver modules from the under-
lying SUNDIALS infrastructure (see section §11). By default, ARKODE selects a variant of Newton’s method,

Z§m+1) _ Zz(m) + 5(m+1)7 (2.28)

where m is the Newton iteration index, and the Newton update 6**1) in turn requires the solution of the Newton linear
system

A(th 2™ ) D =~ (20 (2.29)
in which
A(t, z) = M(t) —~J(t, 2), J(t,z)= W, and = hnAz{i (2.30)
within ARKStep, or
Alt,2) =~ T —~J(t,2), J(t,z)= W, and v =h° 2 Z{j}l (2.31)

within MRIStep.

In addition to Newton-based nonlinear solvers, the SUNDIALS SUNNonlinearSolver interface allows solvers of fixed-
point type. These generally implement a fixed point iteration for solving an implicit stage z;,
A — g (z()> =" Mt )G (z§m>) C om=0,1,.... (2.32)

Unlike with Newton-based nonlinear solvers, fixed-point iterations generally do not require the solution of a linear
system involving the Jacobian of f at each iteration.

Finally, if the user specifies that f(¢,y) depends linearly on y in ARKStep or MRIStep and if the Newton-based
SUNNonlinearSolver module is used, then the problem (2.22) will be solved using only a single Newton iteration. In this
case, an additional user-supplied argument indicates whether this Jacobian is time-dependent or not, signaling whether
the Jacobian or preconditioner needs to be recomputed at each stage or time step, or if it can be reused throughout the
full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of linear systems involving the Jacobian of f, each iteration may be significantly less costly than their
Newton counterparts. However, this can come at the cost of slower convergence (or even divergence) in comparison with
Newton-like methods. While a Newton-based iteration is the default solver in ARKODE due to its increased robustness
on very stiff problems, we strongly recommend that users also consider the fixed-point solver when attempting a new
problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction zfo) that is
computed explicitly from previously-computed data (e.g. y,,—2, yn—1, and z; where j < 7). Additional information on
the specific predictor algorithms is provided in section §2.11.5.
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2.11.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKODE leverages another component of the shared SUNDIALS
infrastructure, the “SUNLinearSolver,” described in section §10. These linear solver modules are grouped into two
categories: matrix-based linear solvers and matrix-free iterative linear solvers. ARKODE’s interfaces for linear solves
of these types are described in the subsections below.

2.11.2.1 Matrix-based linear solvers

In the case that a matrix-based linear solver is selected, a modified Newton iteration is utilized. In a modified Newton
iteration, the matrix A is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

At 2) 6mt) = _q (z§m>) 7 (2.33)
in which
A(t,2)~ M(t) —4J(t,2), and 7=hA!, (ARKStep) (2.34)
or
{k}
A5~ T-7J(F2), and 7=hY " (MRIStep). (2.35)
k>0 k + 1

Here, the solution Z, time £, and step size h upon which the modified equation rely, are merely values of these quantities
from a previous iteration. In other words, the matrix Ais only computed rarely, and reused for repeated solves. As
described below in section §2.11.2.3, the frequency at which Ais recomputed defaults to 20 time steps, but may be
modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.33), the Jacobian J may be supplied
by a user routine, or approximated internally by finite-differences. In the case of differencing, we use the standard
approximation

»It,era-e- — »It,z
JZ,](t,Z)%fZ( JO—]‘) fz( )’
J

where e; is the j-th unit vector, and the increments o; are given by

oj = max{ﬁ|zj|,00}.
j

W

Here U is the unit roundoff, o is a small dimensionless value, and w; is the error weight defined in (2.16). In the dense
case, this approach requires N evaluations of £, one for each column of .J. In the band case, the columns of .J are
computed in groups, using the Curtis-Powell-Reid algorithm, with the number of f! evaluations equal to the matrix
bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.
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2.11.2.2 Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
A is not itself constructed since the algorithms only require the product of this matrix with a given vector. Additionally,
each Newton system (2.29) is not solved completely, since these linear solvers are iterative (hence the “inexact” in the
name). As a result. for these linear solvers A is applied in a matrix-free manner,

At,z)v=M{)v —~vJ(t, z)v.

The mass matrix-vector products Mv must be provided through a user-supplied routine; the Jacobian matrix-vector
products Jv are obtained by either calling an optional user-supplied routine, or through a finite difference approximation
to the directional derivative:

itz +ov) — fi(t, 2)

t ~
J(t, z)v . ,

where we use the increment o = 1/||v|| to ensure that ||ov| = 1.

As with the modified Newton method that reused .A between solves, the inexact Newton iteration may also recompute
the preconditioner P infrequently to balance the high costs of matrix construction and factorization against the reduced
convergence rate that may result from a stale preconditioner.

2.11.2.3 Updating the linear solver

In cases where recomputation of the Newton matrix Aor preconditioner P is lagged, these structures will be recomputed
only in the following circumstances:

* when starting the problem,
* when more than msbp = 20 steps have been taken since the last update (this value may be modified by the user),

 when the value 7 of ~y at the last update satisfies |v/5 — 1| > Avynae = 0.2 (this value may be modified by the
user),

* when a non-fatal convergence failure just occurred,
* when an error test failure just occurred, or
« if the problem is linearly implicit and « has changed by a factor larger than 100 times machine epsilon.

When an update of A or P occurs, it may or may not involve a reevaluation of J (in fl) or of Jacobian data (in P),
depending on whether errors in the Jacobian were the likely cause for the update. Reevaluating J (or instructing the
user to update P) occurs when:

e starting the problem,
» more than msbj = 50 steps have been taken since the last evaluation (this value may be modified by the user),

* a convergence failure occurred with an outdated matrix, and the value 4 of ~ at the last update satisfies
/v —1[>02,

* a convergence failure occurred that forced a step size reduction, or
« if the problem is linearly implicit and « has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver conver-
gence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user may
specify that the system matrix .A and/or preconditioner P should be recomputed more frequently.

As will be further discussed in section §2.11.4, in the case of most Krylov methods, preconditioning may be applied
on the left, right, or on both sides of .4, with user-supplied routines for the preconditioner setup and solve operations.
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2.11.3 Iteration Error Control

2.11.3.1 Nonlinear iteration error control

ARKODE provides a customized stopping test to the SUNNonlinearSolver module used for solving equation (2.22).
This test is related to the temporal local error test, with the goal of keeping the nonlinear iteration errors from interfering

with local error control. Denoting the final computed value of each stage solution as zi(m), and the true stage solution
(m)

solving (2.22) as z;, we want to ensure that the iteration error z; — z; ’ is “small” (recall that a norm less than 1 is

already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate R; of the nonlinear iteration. We initialize ; = 1, and reset it

to this value whenever A or P are updated. After computing a nonlinear correction §("™ = zfm) — zi(m_l), ifm >0
we update R; as

R; < max {chi,

s -2

where the default factor ¢, = 0.3 is user-modifiable.

Let yﬁlm) denote the time-evolved solution constructed using our approximate nonlinear stage solutions, zi(m), and let
yﬁ,,oo) denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate

‘ ngoo) o y7(Lm)H ~ max‘ Zi(m-&-l) o Zz(m)H ~ max R; Hzi(m) _ Zi(m—l)H — max R, 5(m)H )
Therefore our convergence (stopping) test for the nonlinear iteration for each stage is
Ri Ha<’"> <e (2.37)

where the factor € has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the
nonlinear iteration to be divergent if any of the ratios

Ps /18D > raae (2.38)

with m > 0, where rg;, defaults to 2.3. If convergence fails in the nonlinear solver with 4 current (i.e., not lagged),
we reduce the step size h,, by a factor of 1.y = 0.25. The integration will be halted after max,.r = 10 convergence
failures, or if a convergence failure occurs with h,, = hp;,. However, since the nonlinearity of (2.22) may vary
significantly based on the problem under consideration, these default constants may all be modified by the user.

2.11.3.2 Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.29), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector (") using the preconditioned residual vector, e.g.
r = PAS(™ 4+ PG for the case of left preconditioning (the role of the preconditioner is further elaborated in the next
section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error and
local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

€€

10"
Here € is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter €,
are typically useful for strongly nonlinear or very stifft ODE systems, while easier ODE systems may benefit from a
value closer to 1. The default value is e, = 0.05, which may be modified by the user. We note that for linearly implicit
problems the tolerance (2.39) is similarly used for the single Newton iteration.

Ir]| < (2.39)
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2.11.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.22), an iterative method is used repeatedly
to solve linear systems of the form Ax = b, where x is a correction vector and b is a residual vector. If this iterative
method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system .Ax = b can be preconditioned using any one of:

(P' Az =P ' [left preconditioning],
(AP YHYPz =10 [right preconditioning],
(P, 'APR Y Pre = P;'b [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix P~* A, AP~!, or P; ' AP} ", instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product Py, Py in
the third case, should in some sense approximate the system matrix .A. Simultaneously, in order to be cost-effective the
matrix P (or matrices P, and Pr) should be reasonably efficient to evaluate and solve. Finding an optimal point in this
trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-dependent
(for example, see [20] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices .4 we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product P = Pr Pr). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is
the product of two matrices, we recommend that preconditioning be done either on the left only or the right only, rather
than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric matrix A,
since the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as P~1/2AP~1/2,

Typical preconditioners are based on approximations to the system Jacobian, J = 0 f/9dy. Since the Newton iteration
matrix involved is A = M — ~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = M — ~.J. Because the Krylov iteration occurs within a Newton iteration and further also within a time
integration, and since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical features of the system. We have found that the
combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.11.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses for each
implicit Runge—Kutta stage, zi(o). As is well-known with nonlinear solvers, the selection of a good initial guess can
have dramatic effects on both the speed and robustness of the solve, making the difference between rapid quadratic
convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided. In each

case, the stage guesses zi(o) are constructed explicitly using readily-available information, including the previous step
solutions y,_1 and y, 2, as well as any previous stage solutions z;, 7 < ¢. In most cases, prediction is performed
by constructing an interpolating polynomial through existing data, which is then evaluated at the desired stage time to
provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically, for most Runge—Kutta

methods each stage solution satisfies

2 =~ y(th,i)7

(similarly for MRI methods z; ~ y(tii)), so by constructing an interpolating polynomial p, (¢) through a set of existing
data, the initial guess at stage solutions may be approximated as

20 = py(tL ). (2.40)
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As the stage times for MRI stages and implicit ARK and DIRK stages usually have non-negative abscissae (i.e., c§ > 0),
it is typically the case that tiy ; (resp., tg’ ;) is outside of the time interval containing the data used to construct Pq(t),
hence (2.40) will correspond to an extrapolant instead of an interpolant. The dangers of using a polynomial interpolant
to extrapolate values outside the interpolation interval are well-known, with higher-order polynomials and predictions
further outside the interval resulting in the greatest potential inaccuracies.

The prediction algorithms available in ARKODE therefore construct a variety of interpolants p,(¢), having different
polynomial order and using different interpolation data, to support “optimal” choices for different types of problems, as
described below. We note that due to the structural similarities between implicit ARK and DIRK stages in ARKStep,
and solve-decoupled implicit stages in MRIStep, we use the ARKStep notation throughout the remainder of this section,
but each statement equally applies to MRIStep (unless otherwise noted).

2.11.5.1 Trivial predictor
The so-called “trivial predictor” is given by the formula
Po(t) = Yn-1-
While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying

solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints whose
violation may cause illegal solution values (e.g. a negative density or temperature).

2.11.5.2 Maximum order predictor
At the opposite end of the spectrum, ARKODE’s interpolation modules discussed in section §2.2 can be used to con-

struct a higher-order polynomial interpolant, p,(t). The implicit stage predictor is computed through evaluating the
highest-degree-available interpolant at each stage time tf“

2.11.5.3 Variable order predictor
This predictor attempts to use higher-degree polynomials p,(¢) for predicting earlier stages, and lower-degree inter-
polants for later stages. It uses the same interpolation module as described above, but chooses the polynomial degree

adaptively based on the stage index ¢, under the assumption that the stage times are increasing, i.e. c§ < cé for j < k:

g =max{qmax —t+1, 1}, i=1,...,s.

2.11.5.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

h
polynomial interpolant to use for prediction. Denoting 7 = ¢/ —"—, the polynomial degree ¢; is chosen as:
n—1
4 = max, 1 7 < g,
’ 1, otherwise.
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2.11.5.5 Bootstrap predictor (M = I only) — deprecated

This predictor does not use any information from the preceding step, instead using information only within the current
step [tn—1,tn]. In addition to using the solution and ODE right-hand side function, y,,—1 and f(t,—1,Yn—1), this
approach uses the right-hand side from a previously computed stage solution in the same step, f(¢,—1 + c§h, zj) to

construct a quadratic Hermite interpolant for the prediction. If we define the constants h = c§ hand 7 = c!h, the
predictor is given by

2 2

z2 ) = Yn 1+ [T— —= tne1,Yn—1) + —=f(tn_1 + h,z;).
i Yn—1 ( 2h) J(tn—1,Yn—1) th( 1 )

For stages without a nonzero preceding stage time, i.e. c§ # 0 for j < 1, this method reduces to using the trivial

predictor z( ) = = y,—1. For stages having multiple preceding nonzero c§ ,

to minimize the level of extrapolation used in the prediction.

we choose the stage having largest c§ value,

We note that in general, each stage solution z; has significantly worse accuracy than the time step solutions y,_1, due
to the difference between the stage order and the method order in Runge—Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [t,,—2, t;—1].

Although this approach could be used with non-identity mass matrix, support for that mode is not currently imple-
mented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial predictor.

Note: This predictor has been deprecated, and will be removed from a future release.

2.11.5.6 Minimum correction predictor (ARKStep, M/ = I only) — deprecated

The final predictor is not interpolation based; instead it utilizes all existing stage information from the current step to
create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.4) and (2.22),
each stage solves a nonlinear equation

i—1

Zi:y'rn—l"'hnZAEjfE n,js % +hnZA n]a ')7
j=1
G(zi)zzthnAI fl(n“ )7(11:()
This prediction method merely computes the predictor z; as

i—1
Zi:ynfl'i‘hnZAiE,jfE n,jr % +h ZA ng> )7

=1

Z; = Q.

Again, although this approach could be used with non-identity mass matrix, support for that mode is not currently
implemented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial
predictor.

Note: This predictor has been deprecated, and will be removed from a future release.

2.11. Algebraic solvers 51



User Documentation for ARKODE, v5.6.0

2.11.6 Mass matrix solver (ARKStep only)
Within the ARKStep algorithms described above, there are multiple locations where a matrix-vector product
b= Mv (2.41)
or a linear solve
x=DM""1b (2.42)

is required.

Of course, for problems in which M = I both of these operators are trivial. However for problems with non-identity
mass matrix, these linear solves (2.42) may be handled using any valid SUNLinearSolver module, in the same manner
as described in the section §2.11.2 for solving the linear Newton systems.

For ERK methods involving non-identity mass matrix, even though calculation of individual stages does not require an
algebraic solve, both of the above operations (matrix-vector product, and mass matrix solve) may be required within
each time step. Therefore, for these users we recommend reading the rest of this section as it pertains to ARK methods,
with the obvious simplification that since f¥ = f and f! = 0 no Newton or fixed-point nonlinear solve, and no overall
system linear solve, is involved in the solution process.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type of
matrix (dense, band, sparse, or custom) for the Jacobian matrix J must match the type of mass matrix M, since these
are combined to form the Newton system matrix A. When matrix-based methods are employed, the user must supply
a routine to compute M (t) in the appropriate form to match the structure of A, with a user-supplied routine of type
ARKLsMassFn (). This matrix structure is used internally to perform any requisite mass matrix-vector products (2.41).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, Mwv.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass matrix
systems (2.42). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned linear
residual satisfies

Il < epe, (2.43)

where again, € is the nonlinear solver tolerance parameter from (2.37). When using iterative system and mass matrix
linear solvers, e, may be specified separately for both tolerances (2.39) and (2.43).

In the algorithmic descriptions above there are five locations where a linear solve of the form (2.42) is required: (a)
at each iteration of a fixed-point nonlinear solve, (b) in computing the Runge—Kutta right-hand side vectors ﬁE and
Ai[ , (c) in constructing the time-evolved solution y,,, (d) in estimating the local temporal truncation error, and (e) in
constructing predictors for the implicit solver iteration (see section §2.11.5.2). We note that different nonlinear solver
approaches (i.e., Newton vs fixed-point) and different types of mass matrices (i.e., time-dependent versus fixed) result
in different subsets of the above operations. We discuss each of these in the bullets below.

* When using a fixed-point nonlinear solver, at each fixed-point iteration we must solve

?

Mt ) A" =G (M), m=01,...

(m+1)

i .

for the new fixed-point iterate, z

* In the case of a time-dependent mass matrix, to construct the Runge—Kutta right-hand side vectors we must solve
M(tfl)sz = fE(tEm z;) and M(tf”)ff = fI(th . 2)

n,i’

for the vectors fiE and ff .
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* For fixed mass matrices, we construct the time-evolved solution y,, from equation (2.4) by solving

My, = My, 1+ hy Z (bF 2t 5 2) + ] f1 (8, 55 20))
=1

S

M(Yn = yn-1) = hnz (OF fE (5 2i) + 0] f1(th 5 20))

S

= Dy (BF Pt 5 20) + 0 (00 20))
=1

for the update v = y,, — Yn—1-

Similarly, we compute the local temporal error estimate 7,, from equation (2.19) by solving systems of the form
MTn—hZ[(bE bE) St ) + (b =) 1 (th )] (2.44)

¢ For problems with either form of non-identity mass matrix, in constructing dense output and implicit predictors of
degree 2 or higher (see the section §2.11.5.2 above), we compute the derivative information fj, from the equation

M(tn)fn = fE(tnvyn) + fI(tna yn)

In total, for problems with fixed mass matrix, we require only two mass-matrix linear solves (2.42) per attempted
time step, with one more upon completion of a time step that meets the solution accuracy requirements. When fixed
time-stepping is used (h,, = h), the solve (2.44) is not performed at each attempted step.

Similarly, for problems with time-dependent mass matrix, we require 2s mass-matrix linear solves (2.42) per attempted
step, where s is the number of stages in the ARK method (only half of these are required for purely explicit or purely
implicit problems, (2.5) or (2.6)), with one more upon completion of a time step that meets the solution accuracy
requirements.

In addition to the above totals, when using a fixed-point nonlinear solver (assumed to require m iterations), we will
need an additional ms mass-matrix linear solves (2.42) per attempted time step (but zero linear solves with the system
Jacobian).

2.12 Rootfinding

All of the time-stepping modules in ARKODE also support a rootfinding feature. This means that, while integrating
the IVP (2.1), these can also find the roots of a set of user-defined functions g; (¢, y) that depend on ¢ and the solution
vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found to have a root in
any given interval, the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(t, y(t)),
denoted g; (t) for short. If a user root function has a root of even multiplicity (no sign change), it will almost certainly
be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should reformulate the root
function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [48]. In addition, each time g is evaluated,
ARKODE checks to see if g;(¢t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is

2.12. Rootfinding 53



User Documentation for ARKODE, v5.6.0

found at a point ¢, ARKODE computes g(t + ¢) for a small increment J, slightly further in the direction of integration,
and if any g;(t + ) = 0 also, ARKODE stops and reports an error. This way, each time ARKODE takes a time step, it
is guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKODE
has an interval (ty,, t,;] in which roots of the g;(t) are to be sought, such that ty; is further ahead in the direction of
integration, and all g;(¢),) # 0. The endpoint ¢y; is either ¢,,, the end of the time step last taken, or the next requested
output time ¢, if this comes sooner. The endpoint #y, is either ¢,,_1, or the last output time tqy (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,
if an exact zero was found. The algorithm checks g(ty;) for zeros, and it checks for sign changes in (¢, ;). If no sign
changes are found, then either a root is reported (if some g; (tp;) = 0) or we proceed to the next time interval (starting at
tni). If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance,
given by

T =100U (|t,.| + |R|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (tni)| / |9i(tni) — 9:(ti)], corresponding to the closest to ¢, of the secant method
values. Ateach pass through the loop, a new value ¢4 is set, strictly within the search interval, and the values of g; (tmiq)
are checked. Then either ¢, or ty; is reset to ¢,ig according to which subinterval is found to have the sign change. If
there is none in (%o, tmia) but some g;(tmia) = 0, then that root is reported. The loop continues until |ty — 0] < T,
and then the reported root location is tp;. In the loop to locate the root of g;(t), the formula for ¢4 is

tid = thi —
™ " gi(tn) — agi(to)’

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making t.,q the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward t), vs toward ty;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides
were the same, « is halved (if on the low side) or doubled (if on the high side). The value of ¢, is closer to ¢}, when
a < 1 and closer to tp; when o > 1. If the above value of tq is within 7/2 of ¢, or tp;, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

Finally, we note that when running in parallel, ARKODE'’s rootfinding module assumes that the entire set of root
defining functions g;(t, y) is replicated on every MPI rank. Since in these cases the vector y is distributed across ranks,
it is the user’s responsibility to perform any necessary communication to ensure that g; (¢, y) is identical on each rank.

2.13 Inequality Constraints

The ARKStep and ERKStep modules in ARKODE permit the user to impose optional inequality constraints on individ-
ual components of the solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
ory; < 0. The constraint satisfaction is tested after a successful step and before the error test. If any constraint fails, the
step size is reduced and a flag is set to update the Jacobian or preconditioner if applicable. Rather than cutting the step
size by some arbitrary factor, ARKODE estimates a new step size h’ using a linear approximation of the components
in y that failed the constraint test (including a safety factor of 0.9 to cover the strict inequality case). If a step fails to
satisfy the constraints 10 times (a value which may be modified by the user) within a step attempt, or fails with the
minimum step size, then the integration is halted and an error is returned. In this case the user may need to employ
other strategies as discussed in §5.2.2.2 and §5.3.2.2 to satisfy the inequality constraints.
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2.14 Relaxation Methods

When the solution of (2.1) is conservative or dissipative with respect to a smooth convex function &(y(t)), it is desirable
to have the numerical method preserve these properties. That is £(y,,) = &(yn—1) = ... = &(yo) for conservative
systems and £(y,,) < &(yn—1) for dissipative systems. For examples of such problems, see the references below and
the citations there in.

For such problems, ARKODE supports relaxation methods [54, 60, 68, 69] applied to ERK, DIRK, or ARK methods
to ensure dissipation or preservation of the global function. The relaxed solution is given by

Yr =Yn—1 +rd =71Yp + (1 — r)yn_1 (2.45)

where d is the update to y,, (i.e., hy, >0, (bF fF + bl fI) for ARKStep and h,, 3, b; f; for ERKStep) and 7 is the
relaxation factor selected to ensure conservation or dissipation. Given an ERK, DIRK, or ARK method of at least
second order with non-negative solution weights (i.e., b; > 0 for ERKStep or blE > 0 and biI > 0 for ARKStep), the
factor r is computed by solving the auxiliary scalar nonlinear system

F(r) =&Wn_1+7rd) —EYn_1) —re =0 (2.46)

at the end of each time step. The estimated change in & is given by e = h,, Y 5, (€'(2:),bF fE + bl f]) where ¢’ is the
Jacobian of &.

Two iterative methods are provided for solving (2.46), Newton’s method and Brent’s method. When using Newton’s
method (the default), the iteration is halted either when the residual tolerance is met, /' (r(k)) < €relax_res, OF When
the difference between successive iterates satisfies the relative and absolute tolerances, |57(,k)\ = |pR) — pl-1)| <
erelax_rtoﬂr(k*l)\ + €relax_atol- Brent’s method applies the same residual tolerance check and additionally halts when
the bisection update satisfies the relative and absolute tolerances, [0.5(7. —1%)| < €relax_rtol [T |+0.5€rclax_atol Where
r. and %) bound the root.

If the nonlinear solve fails to meet the specified tolerances within the maximum allowed number of iterations, the step
size is reduced by the factor 7, (default 0.25) and the step is repeated. Additionally, the solution of (2.46) should be
r =1+ O(h4~1) for a method of order q [69]. As such, limits are imposed on the range of relaxation values allowed
(i.e., limiting the maximum change in step size due to relaxation). A relaxation value greater than 7, (default 1.2) or
less than r,;, (default 0.8), is considered as a failed relaxation application and the step will is repeated with the step
size reduced by 7;¢.

For more information on utilizing relaxation Runge—Kutta methods, see §5.3.3 and §5.2.3.
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Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 ARKODE organization

The ARKODE package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKODE package is shown in Fig. 3.3. The central integration modules, implemented
in the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c, arkode_arkstep.c, arkode_erkstep.
c, arkode_mristep.h, and arkode_butcher. c, deal with the evaluation of integration stages, the nonlinear solvers,
estimation of the local truncation error, selection of step size, and interpolation to user output points, among other
issues. ARKODE supports SUNNonlinearSolver modules in either root-finding or fixed-point form (see section §11)
for any nonlinearly implicit problems that arise in computing each internal stage. When using Newton-based nonlinear
solvers, or when using a non-identity mass matrix M # I, ARKODE has flexibility in the choice of method used
to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers, or any user
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Fig. 3.1: High-level diagram of the SUNDIALS suite.
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Fig. 3.2: Directory structure of the SUNDIALS source tree.
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problem with M = I, one (or more) of the linear system solver modules should be specified by the user; this/these are
then invoked as needed during the integration process.

SUNDIALS

ARKODE
! }
ARKLS ARKNLS
Linear Solver Interface Nonlinear Solver Interface
\ 4 * ‘ \ 4
N_Vector SUNMatrix SUNLinearSolver SUNNonlinearSolver
Interface Interface Interface Interface
v v v v
| Vector | | Matrix | | Linear Solver | | Nonlinear Solver |
A\ 4

Preconditioner Modules
( ARKBBDPRE | [ ARKBANDPRE |

Fig. 3.3: ARKODE organization: Overall structure of the ARKODE package. Modules specific to ARKODE are the
timesteppers (ARKODE), linear solver interfaces (ARKLS), nonlinear solver interfaces (ARKNLS), and precondition-
ers (ARKBANDPRE and ARKBBDPRE); all other items correspond to generic SUNDIALS vector, matrix, and solver
modules.

For solving these linear systems, ARKODE’s linear solver interface supports both direct and iterative linear solvers
adhering to the generic SUNLINSOL API (see §10). These solvers may utilize a SUNMATRIX object for storing
Jacobian information, or they may be matrix-free. Since ARKODE can operate on any valid SUNLINSOL implemen-
tation, the set of linear solver modules available to ARKODE will expand as new SUNLINSOL modules are developed.

For preconditioned iterative methods with either the system or mass matrix solves, the preconditioning must be supplied
by the user in two phases: setup and solve. While there is no default choice of preconditioner for generic problems, the
references [20] and [23], together with the example and demonstration programs included with ARKODE and CVODE,
offer considerable assistance in building simple preconditioners.

ARKODE also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear solvers.
The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures NVECTOR_SE-
RIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient approxima-
tion to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second preconditioner
module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL, and gen-
erates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single processor.

All state information used by ARKODE to solve a given problem is saved in a single opaque memory structure, and a
pointer to that structure is returned to the user. For C, C++ and Fortran 2003 applications there is no global data in the
ARKODE package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved
in a separate data structure, a pointer to which resides in the ARKODE memory structure. State information specific
to the linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures,
that are returned to the user upon construction, and subsequently provided to ARKODE for use.
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Using SUNDIALS

As discussed in §3, the six solvers packages (CVODE(S), IDA(S), ARKODE, KINSOL) that make up SUNDIALS
are built upon common classes/modules for vectors, matrices, and algebraic solvers. In addition, the six packages all
leverage some other common infrastructure, which we discuss in this section.

4.1 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

* ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

e Will return < 0O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

(continues on next page)
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(continued from previous page)

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free(SUNContext *ctx)
Frees the SUNContext object.

Arguments:
e ctx — pointer to a valid SUNContext object, NULL upon successful return.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
* ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.
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Returns:
e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —a valid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.1.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

¢ Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Ttis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;

(continues on next page)
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(continued from previous page)

int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx);
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.
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4.1.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>

{

public:

explicit Context(void* comm = nullptr)

{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

1

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.1. The SUNContext Type
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4.2 SUNDIALS Status Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.2.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPI is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §13.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).

66 Chapter 4. Using SUNDIALS



User Documentation for ARKODE, v5.6.0

4.2.2 Logger API

The central piece of the Logger API is the SUNLogger type:
typedef struct SUNLogger_ *SUNLogger

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE

Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (void *comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (void *comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

* comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
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¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger —a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger — a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

* Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:

* logger —a SUNLogger object.
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e 1vl — the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
* label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

e 1v1 - the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger —a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

4.2. SUNDIALS Status Logging 69



User Documentation for ARKODE, v5.6.0

4.2.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.3 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [16] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.3.2).

4.3.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §13.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.
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4.3.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDTIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e. an instance of the struct

typedef struct _SUNProfiler *SUNProfiler

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(void *comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

* p—a SUNProfiler object
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* name — a name for the profiling region
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

e p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.3.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

VA

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

(continues on next page)
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umax = N_VMaxNorm(uw);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.3.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.4 SUNDIALS Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
* patch — SUNDIALS release patch version number.
¢ label — string to hold the SUNDIALS release label.
¢ [en — allocated length of the label character array.
Return value:

e 0 if successful
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* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5 SUNDIALS Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, and farkode_mristep_mod modules provide in-
terfaces to the ARKStep, ERKStep, and MRIStep integrators respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

¢ CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.
¢ IDA via the fida_mod module.

e IDAS via the fidas_mod module.
e KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fnvecpenmp_mod.<so|a>,
libsundials_nvecopenmp.<so|a>, libsundials_fcvode_mod.<so|a> and 1libsundials_cvode.<so|a>.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.5.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.5.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation (§8, §9, §10, and §11 respectively). For details
on where the Fortran 2003 module (.mod) files and libraries are installed see §13.

The Fortran 2003 interface modules were generated with SWIG Fortran [53], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.
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Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module

Fortran 2003 Module Name

ARKODE

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP

CVODE

CVODES

IDA

IDAS

KINSOL

NVECTOR
NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE
SUNMATRIX_SPARSE
SUNLINSOL
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

farkode_mod
farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
fcvode_mod

fcvodes_mod

fida_mod

fidas_mod

fkinsol_mod
fsundials_nvector_mod
fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsundials_matrix_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod

Not interfaced

Not interfaced
fsunmatrix_sparse_mod
fsundials_linearsolver_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsundials_nonlinearsolver_mod
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.5. SUNDIALS Fortran Interface

75



User Documentation for ARKODE, v5.6.0

4.5.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double-precision the sunindextype size is 64-bits.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real (c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real (c_double), dimension(*)
realtype* return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
realtypel[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

T in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)
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4.5.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.5.1 discusses
equivalencies of data types in the two languages.

4.5.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
X => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.5.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
realtype” xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial(N, sunctx);

/% capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:
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type(N_Vector), pointer :: x

real (c_double), pointer :: xdataptr(:)

real (c_double) :: xdata(N)
integer(c_long) i1 leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.5.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.
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4.5.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.5.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it X, b

! Disassociate A
A = nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.5.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possi-
ble to directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages
with sensitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIn-
dexVectorArray () that can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, X);

/* Fill each array with ones */
for (dint i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, Xx)

(continues on next page)
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! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray () (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §8.1.1.

4.5.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_futils_mod.

FILE *SUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Arguments:

e filename — the path to the file, that should have Fortran type character (kind=C_CHAR, len=%).
There are two special filenames: stdout and stderr — these two filenames will result in output going
to the standard output file and standard error file, respectively.

¢ mode — the I/O mode to use for the file. This should have the Fortran type character (kind=C_CHAR,
len=%*). The string begins with one of the following characters:

— rto open a text file for reading

— r+ to open a text file for reading/writing

— wto truncate a text file to zero length or create it for writing

— w+ to open a text file for reading/writing or create it if it does not exist

— ato open a text file for appending, see documentation of fopen for your system/compiler

— a+toopen atext file for reading/appending, see documentation for fopen for your system/compiler
Return value:

¢ The function returns a type (C_PTR) which holds a C FILE*.

void SUNDIALSFileClose(fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Arguments:

e fp — the C FILE* that was previously obtained from fopen. This should have the Fortran type
type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALSFileOpen() then
that stream will not be closed by this function.
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4.5.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran
18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.5.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v = yarr(2)

I fill in the RHS function:

[0 0]*[(-1+ur2-r(t))/C*w] + [ 0 1
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

(continues on next page)
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! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.6 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs (see Chapters §8, §9, §10, and §11) or through user-supplied callback functions. Thus,
under the model, the overall structure of the user’s calling program, and the way users interact with the SUNDIALS
packages is similar to using SUNDIALS in CPU-only environments.

4.6.1 SUNDIALS GPU Programming Model

As described in [13], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §8.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDI-
ALS operates on data through these APIs.

In addition, SUNDIALS provides a memory management helper module (see §12) to support applications which im-
plement their own memory management or memory pooling.
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Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! x! x!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFOMR X! X! X! x! x!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON X! x! x! x! X!
SUNNONLINSOL_FIXEDPOINT X! X! X! X! X!

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.
3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.6. Features for GPU Accelerated Computing
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4.6.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.
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Chapter 5

Using ARKODE

This chapter discusses usage for ARKODE from C, C++ and Fortran applications. The chapter builds upon §4. We
first discuss commonalities to each of ARKODE'’s time-stepping modules, including locations and naming conventions
for the library and header files, and discussion of data types in SUNDIALS. We then separately discuss the C and C++
interfaces to each of ARKODE'’s time stepping modules: ARKStep, ERKStep, SPRKStep and MRIStep. Following
these, we describe the set of user-supplied routines (both required and optional) that can be supplied to ARKODE.

5.1 Access to library and header files

At this point, it is assumed that the installation of ARKODE, following the procedure described in §13, has been
completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKODE. The relevant library files
are

e libdir/libsundials_arkode.lib,
e libdir/libsundials_nvec*.1ib,

where the file extension .1ib is typically .so for shared libraries and .a for static libraries. The relevant header files
are located in the subdirectories

e incdir/include/arkode

e incdir/include/sundials

e incdir/include/nvector

e incdir/include/sunmatrix

e incdir/include/sunlinsol

e incdir/include/sunnonlinsol

The directories 1ibdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/1lib and instdir/include, respectively, where instdir is the directory where SUN-
DIALS was installed (see §13 for further details).

When using ARKODE, the calling program must include several header files so that various macros and data types can
be used. One of the following header files is always required:

* arkode/arkode_arkstep.h, the main header file for the ARKStep time-stepping module.
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* arkode/arkode_erkstep.h, the main header file for the ERKStep time-stepping module.
* arkode/arkode_mristep.h, the main header file for the MRIStep time-stepping module.

Each of these define several types and various constants, include function prototypes, and include the shared arkode/
arkode.h and arkode/arkode_1s.h header files.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not need to include sundials_-
types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form nvector/
nvector_*** h, corresponding to the user’s preferred data layout and form of parallelism. See §8 for details for the
appropriate name. This file in turn includes the header file sundials_nvector.h which defines the abstract N_Vector
data type.

If the user wishes to manually select between any of the pre-defined ERK or DIRK Butcher tables (for ARKStep,
ERKStep, or as the basis for an MIS method), these are defined through a set of constants that are enumerated in the
header files arkode/arkode_butcher_erk.h and arkode/arkode_butcher_dirk.h, or if a user wishes to man-
ually specify one or more Butcher tables, the corresponding ARKodeButcherTable structure is defined in arkode/
arkode_butcher.h. Alternatively, for MRIStep, slow-to-fast coupling coeflicient tables are enumerated in the header
file arkode/arkode_mristp.h, or if a user wishes to manually specify a coupling table, the corresponding MRIS-
tepCouplingMem structure is defined in arkode/arkode_mristep.h.

If the user includes a non-trivial implicit component to their ODE system in ARKStep, or if the slow time scale for
MRIStep should be treated implicitly, then each implicit stage will require a nonlinear solver for the resulting sys-
tem of algebraic equations — the default for this is a modified or inexact Newton iteration, depending on the user’s
choice of linear solver. If using a non-default nonlinear solver module, or when interacting with a SUNNONLINSOL
module directly, the calling program must also include a SUNNONLINSOL header file, of the form sunnonlinsol/
sunnonlinsol_***.h where *** is the name of the nonlinear solver module (see §11 for more information). This file
in turn includes the header file sundials_nonlinearsolver.h which defines the abstract SUNNonlinearSolver

data type.

If using a nonlinear solver that requires the solution of a linear system of the form Ax = b (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system in ARKStep
involves a non-identity mass matrix M = I, then each time step will require a linear solver for systems of the form
Mz = b. The header files corresponding to the SUNDIALS-provided linear solver modules available for use with
ARKODE are:

¢ Direct linear solvers:

sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLINSOL _-
DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLINSOL_-
BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver module,
SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver module,
SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUNLINSOL,_-
KLU;

— sunlinsol/sunlinsol_superlumt.h, whichis used with the SuperLU_MT sparse linear solver module,
SUNLINSOL_SUPERLUMT;

— sunlinsol/sunlinsol_superludist.h, which is used with the SuperLU_DIST parallel sparse linear
solver module, SUNLINSOL_SUPERLUDIST;
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— sunlinsol/sunlinsol_cusolversp_batchqr.h, which is used with the batched sparse QR factoriza-
tion method provided by the NVDIA cuSOLVER library, SUNLINSOL_CUSOLVERSP_BATCHQR;

e [terative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear
solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES Krylov lin-
ear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov
linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov lin-
ear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear solver
module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include the
file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well as various
functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include the
file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as various
functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KILU and SUNLINSOL_SUPERLUMT linear solver modules include the file
sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as various
functions and macros for acting on such matrices.

The header file for the SUNLINSOL_CUSOLVERSP_BATCHQR linear solver module includes the file sunmatrix/
sunmatrix_cusparse.h, which defines the SUNMATRIX_CUSPARSE matrix module, as well as various functions
for acting on such matrices.

The header file for the SUNLINSOL_SUPERLUDIST linear solver module includes the file sunmatrix/
sunmatrix_slunrloc.h, which defines the SUNMATRIX_SLUNRLOC matrix module, as well as various functions
for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which enumer-
ates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt orthogo-
nalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h is
needed to access the preconditioner initialization routines.

5.1.1 Data Types

The header file sundials_types.h contains the definition of the types:
» realtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices
* booleantype — the type used for logic operations within SUNDIALS
e SUNOutputFormat — an enumerated type for SUNDIALS output formats
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5.1.1.1 Floating point types

type realtype

The type realtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest value repre-
sentable as a realtype, SMALL_REAL to be the smallest value representable as a realtype, and UNIT_ROUNDOFF to
be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that needs the ability
to branch on the definition of realtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to 1.0F
if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro internally to
declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double, fabsf when
realtype is float, and fabsl when realtype is long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros is
precision-independent except for any calls to precision-specific library functions. Our example programs use real-
type, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double in their code
(assuming that this usage is consistent with the typedef for realtype) and call the appropriate math library functions
directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying the code to use
realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use the corresponding precision
(see §13.1.2).

5.1.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23* — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §13.1.2).

88 Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

5.1.1.3 Boolean type

type booleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type booleantype
as an int.

The advantage of using the name booleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type booleantype are intended to have
only the two values SUNFALSE (0) and SUNTRUE (1).

5.1.1.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

5.2 Using the ARKStep time-stepping module

This chapter is concerned with the use of the ARKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the user’s main
program, and provide descriptions of the ARKStep user-callable functions and user-supplied functions.

The example programs located in the source code examples/arkode folder, including those described in the compan-
ion document [70], may be helpful as templates for new codes.

Users with applications written in Fortran should see the chapter §4.5, which describes the Fortran/C interface module
for ARKStep, and may look to the Fortran example programs also provided in the ARKODE examples directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX, and preconditioning modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each SUNMATRIX (see
§9) and each SUNLINSOL module (see §10). For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMATRIX types, or with the corresponding dense, banded, or sparse SUNLINSOL modules.
Please check §9 and §10 to verify compatibility between these modules. In addition to that documentation, we note
that the ARKBANDPRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_-
OPENMP or NVECTOR_PTHREADS vector implementations, and the preconditioner module ARKBBDPRE can
only be used with NVECTOR_PARALLEL.

ARKStep uses various input and output constants from the shared ARKODE infrastructure. These are defined as needed
in this chapter, but for convenience the full list is provided separately in §14.

The relevant information on using ARKStep’s C and C++ interfaces is detailed in the following subsections.
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5.2.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ARKStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUN-
NONLINSOL implementations used. For the steps that are not, refer to §8, §9, §10, and §11 for the specific name of
the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

. Create the SUNDIALS simulation context object.

Call SUNContext_Create() to allocate the SUNContext object.

. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

. Set vector of initial values

To set the vector y® of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y® = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector by
making a call of the form

yO = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.

. Create ARKStep object

Call arkode_mem = ARKStepCreate(...) tocreate the ARKStep memory block. ARKStepCreate () returns
a void* pointer to this memory structure. See §5.2.2.1 for details.

. Specify integration tolerances

Call ARKStepSStolerances() or ARKStepSVtolerances() to specify either a scalar relative tolerance and
scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. Alter-
natively, call ARKStepliFtolerances() to specify a function which sets directly the weights used in evaluating
WRMS vector norms. See §5.2.2.2 for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from the equation
units, absolute tolerances for the equation residuals (nonlinear and linear) may be specified separately through
calls to ARKStepResStolerance(), ARKStepResVtolerance(), or ARKStepResFtolerance().
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7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will be
a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(..., sunctx);

or similar for the other matrix modules (see §9 for further information).

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be solved
using a direct linear solver, then a template mass matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

8. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §10.
9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in §10 for details.

10. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see §5.2.2.3):

ier = ARKStepSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for details
see §5.2.2.3):

ier = ARKStepSetMassLinearSolver(...);

11. Create nonlinear solver object

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for im-
plicit stage solves (see §5.2.2.5), then the desired nonlinear solver object must be created by using the appropriate
functions defined by the particular SUNNONLINSOL implementation (e.g., NLS = SUNNonlinSol_***(...
) ; where *** is the name of the nonlinear solver (see §11 for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in §11.
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12. Attach nonlinear solver module
If a nonlinear solver object was created above, then it must be attached to ARKStep using the call (for details see
§5.2.2.5):
ier = ARKStepSetNonlinearSolver(...);

13. Set nonlinear solver optional inputs
Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to ARKStep, otherwise the
optional inputs will be overridden by ARKStep defaults. See §11 for more information on optional inputs.

14. Set optional inputs
Call ARKStepSet* functions to change any optional inputs that control the behavior of ARKStep from their
default values. See §5.2.2.8 for details.

15. Specify rootfinding problem
Optionally, call ARKStepRootInit () to initialize a rootfinding problem to be solved during the integration of
the ODE system. See §5.2.2.6 for general details, and §5.2.2.8 for relevant optional input calls.

16. Advance solution in time
For each point at which output is desired, call
ier = ARKStepEvolve(arkode_mem, tout, yout, &tret, itask);
Here, itask specifies the return mode. The vector yout (which can be the same as the vector y® above) will
contain y(teu ). See §5.2.2.7 for details.

17. Get optional outputs
Call ARKStepGet* functions to obtain optional output. See §5.2.2.10 for details.

18. Deallocate memory for solution vector
Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:
N_VDestroy(y);

19. Free solver memory
Call ARKStepFree () to free the memory allocated for the ARKStep module (and any nonlinear solver module).

20. Free linear solver and matrix memory
Call SUNLinSolFree() and (possibly) SUNMatDestroy () to free any memory allocated for the linear solver
and matrix objects created above.

21. Free nonlinear solver memory
If a user-supplied SUNNonlinearSolver was provided to ARKStep, then call SUNNonlinSolFree() to free
any memory allocated for the nonlinear solver object created above.

22. Finalize MPI, if used
Call MPI_Finalize to terminate MPL
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5.2.2 ARKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ARKStep time-
stepping module. Some of these are required; however, starting with §5.2.2.8, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKODE’s ARKStep module.
In any case, refer to the preceding section, §5.2.1, for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide their own error handler function (see §5.2.2.8 for details).

5.2.2.1 ARKStep initialization and deallocation functions

void *ARKStepCreate (ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0, SUNContext sunctx)

This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKODE.

Arguments:

¢ fe — the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in M (¢) v/ (t) = fE(t,y) + fL(t,y).

* fi — the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M () y/(t) = fE(t,y) + fL(t,y).

¢ 10 — the initial value of ¢.
* y0 — the initial condition vector y(¢o).
* sunctx —the SUNContext object (see §4.1)

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ARKStepFree (void **arkode_mem)

This function frees the problem memory arkode_mem created by ARKStepCreate().
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

Return value: None

5.2.2.2 ARKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ARKSte-
pEvolve(); otherwise default values of reltol = le-4 and abstol = 1le-9 will be used, which may be entirely
incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of ARKStepSStol-
erances (), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKStepSVtolerances () the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);
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This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

| X 1/2
_ . 2
[vllwrams = (N > (v; ewt;) ) ;

i=1
where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to ARKStepliFtoler-
ances().

int ARKStepSStolerances (void *arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepSVtolerances (void *arkode_mem, realtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepWFtolerances (void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* efun — the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:

e ARK SUCCESS if successful
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* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Moreover, for problems involving a non-identity mass matrix M # I, the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKStep defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKStepResStolerance(), this vector has
components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKStepResVtolerance () the vector components are given by

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

o 1/2
— . . 2
lllwrms = (N ;(vl rwt;) ) ,

where N is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKStepResFtolerance (). Further information on all three of these functions is provided below.

int ARKStepResStolerance (void *arkode_mem, realtype rabstol)

This function specifies a scalar absolute residual tolerance.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rabstol — scalar absolute residual tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResVtolerance (void *arkode_mem, N_Vector rabstol)

This function specifies a vector of absolute residual tolerances.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rabstol — vector containing the absolute residual tolerances for each solution component.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
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e ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResFtolerance(void *arkode_mem, ARKRwiFn rfun)

This function specifies a user-supplied function rfun to compute the residual weight vector rwt.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rfun — the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern. The
following pieces of advice are relevant.

(D

2

3)

“4)

The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~2. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
1015 for double-precision).

The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no sense
(and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs
to be set to that noise level. If the different components have different noise levels, then abstol should be a vector.
For example, see the example problem ark_robertson.c, and the discussion of it in the ARKODE Examples
Documentation [70]. In that problem, the three components vary between O and 1, and have different noise
levels; hence the atols vector therein. It is impossible to give any general advice on abstol values, because
the appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as
to what those noise levels are.

The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for abstol,
except that these should be set to the noise level of the equation components, i.e. the noise level of My. For
problems in which M = I, it is recommended that rabstol be left unset, which will default to the already-
supplied abstol values.

Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that accu-
mulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10 from
the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice for reltol is
10~°. In any case, it is a good idea to do a few experiments with the tolerances to see how the computed solution
values vary as tolerances are reduced.
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Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

(1) The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKStep, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

(3) The user’s right-hand side routines f¥ and f! should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the f¥ or f/
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing f(¢,y) or f1(¢,v).

(4) ARKStep supports component-wise constraints on solution components, y; < 0, y; < 0, ,y; > 0, or y; > 0,
through the user-callable function ARKStepSetConstraints(). At each internal time step, if any constraint
is violated then ARKStep will attempt a smaller time step that should not violate this constraint. This reduced
step size is chosen such that the step size is the largest possible but where the solution component satisfies the
constraint.

(5) Positivity and non-negativity constraints on components can also be enforced by use of the recoverable error
return feature in the user-supplied right-hand side functions, ¥ and f!. When a recoverable error is encountered,
ARKStep will retry the step with a smaller step size, which typically alleviates the problem. However, since this
reduced step size is chosen without knowledge of the solution constraint, it may be overly conservative. Thus
this option involves some additional overhead cost, and should only be exercised if the above recommendations
are unsuccessful.

5.2.2.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKStep require the solution
of linear systems of the form

A (me)) sm D) — _a (21(7”))

where

I
A~ M —~J, Jzai.
dy

ARKODE’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix .J, the
Newton matrix 4, the mass matrix M, and, when using direct solvers, the factorizations used throughout the solution
process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations, and
only require the action of the matrix on a vector, Av. With most of these methods, preconditioning can be done on
the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
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that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver portions of §5.2.2.8 and §5.6.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P, (either of which could be the identity matrix), such that the product P; P, approximates the Newton matrix
A=M —~J.

To specify a generic linear solver for ARKStep to use for the Newton systems, after the call to ARKStepCreate () but
before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver object and
call the function ARKStepSetLinearSolver(), as documented below. To create the SUNLinearSolver object, the
user may call one of the SUNDIALS-packaged SUNLinSol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of SUNDIALS-packaged SUNLinSol modules, and their constructor routines, may be found in chapter
§10. Alternately, a user-supplied SUNLinearSolver module may be created and used. Specific information on how
to create such user-provided modules may be found in §10.1.8.

Once this solver object has been constructed, the user should attach it to ARKStep via a call to ARKStepSetLinear-
Solver(). The first argument passed to this function is the ARKStep memory pointer returned by ARKStepCreate();
the second argument is the SUNLinearSolver object created above. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the ARKLS linear solver interface, linking it to the ARKStep integrator,
and allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int ARKStepSetLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)

This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* LS — the SUNLinearSolver object to use.

¢ J — the template Jacobian SUNMatrix object to use (or NULL if not applicable).
Return value:

* ARKLS_SUCCESS if successful

e ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MEM_FAIL if there was a memory allocation failure

e ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

Notes:
If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMATRIX type in the §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = M —~.J, even if J itself has zeros in nonzero locations
of M. The reasoning for this is that A is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store .4 then it will need to be resized internally by ARKStep.
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5.2.2.4 Mass matrix solver specification functions

As discussed in §2.11.6, if the ODE system involves a non-identity mass matrix M # I, then ARKStep must solve
linear systems of the form

Mz =b.

ARKODE’s ARKLS mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this task.
For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a preconditioner, see
the iterative linear solver portions of §5.2.2.8 and §5.6. If preconditioning is to be performed, user-supplied functions
should be used to define left and right preconditioner matrices P; and P (either of which could be the identity matrix),
such that the product P; P, approximates the mass matrix M.

To specify a generic linear solver for ARKStep to use for mass matrix systems, after the call to ARKStepCreate ()
but before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver object
and call the function ARKStepSetMassLinearSolver(), as documented below. The first argument passed to this
function is the ARKStep memory pointer returned by ARKStepCreate(); the second argument is the desired SUN-
LinearSolver object to use for solving mass matrix systems. The third object is a template SUNMatrix to use with
the provided SUNLinearSolver (if applicable). The fourth input is a flag to indicate whether the mass matrix is time-
dependent, i.e. M = M(t), or not. A call to this function initializes the ARKLS mass matrix linear solver interface,
linking this to the main ARKStep integrator, and allows the user to specify additional parameters and routines pertinent
to their choice of linear solver.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

¢ Ifboth are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when forming
the Newton system matrix .A. In this case, both the Newton and mass matrix linear solver interfaces can use the
same SUNLinearSolver object, although different solver objects (e.g. with different solver parameters) are also
allowed.

* If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

int ARKStepSetMassLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix M, booleantype
time_dep)

This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as well
as a template SUNMatrix object.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e LS — the SUNLinearSolver object to use.
* M — the template mass SUNMatrix object to use.

* time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
or not (M # M (t)). SUNTRUE indicates time-dependence of the mass matrix.

Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_MEM_FAIL if there was a memory allocation failure

* ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the current
N_Vector module.
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Notes:
If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either ARKStepReInit () or ARKStepResize() are called), with the results reused throughout the entire
ARKStep simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any
functions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-
matrix constructor routine (see ARKLsMassFn and ARKStepSetMassFn()).

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-
times-vector product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes()).

5.2.2.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKStep, after the call to ARKStepCreate () but before any calls to ARKSte-
pEvolve (), the user’s program must create the appropriate SUNNonlinearSolver object and call ARKStepSetNon-
linearSolver(), as documented below. If any calls to ARKStepEvolve () have been made, then ARKStep will need
to be reinitialized by calling ARKStepReInit () to ensure that the nonlinear solver is initialized correctly before any
subsequent calls to ARKStepEvolve().

The first argument passed to the routine ARKStepSetNonlinearSolver () is the ARKStep memory pointer returned
by ARKStepCreate(); the second argument passed to this function is the desired SUNNonlinearSolver object to
use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to the
main ARKStep integrator.

int ARKStepSetNonlinearSolver (void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e NLS —the SUNNonlinearSolver object to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes:
ARKStep will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces
that module with the supplied NLS object.
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5.2.2.6 Rootfinding initialization function

As described in §2.12, while solving the IVP, ARKODE’s time-stepping modules have the capability to find the roots
of a set of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally
called only once, prior to the first call to ARKStepEvolve (), but if the rootfinding problem is to be changed during the
solution, ARKStepRootInit () can also be called prior to a continuation call to ARKStepEvolve().

int ARKStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate (), and before ARKStepEvolve().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nrifn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots are
sought.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
e ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes:

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit (), where the new IVP has no rootfind-
ing problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.

5.2.2.7 ARKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where ARKStep is to return a solution. These modes are modified if the user has set
a stop time (with a call to the optional input function ARKStepSetStopTime ()) or has requested rootfinding.

int ARKStepEvolve (void *arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in £.

Arguments:
¢ arkode_mem — pointer to the ARKStep memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
* tret — the time corresponding to yout (output).
* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < fout < t,, for forward integration,
ort, < tout < t,_; for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (as described in §2.2).
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The ARK_ONE_STEP option tells the solver to only take a single internal step y,—1 — ¥, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout.

Return value:

Notes:

ARK_SUCCESS if successful.

ARK_ROOT _RETURN if ARKStepEvolve () succeeded, and found one or more roots. If the number
of root functions, nrtfn, is greater than 1, call ARKStepGetRootInfo() to see which g; were found to
have a root at (*tret).

ARK_TSTOP_RETURN if ARKStepEvolve () succeeded and returned at tstop.
ARK_MEM_NULL if the arkode_mem argument was NULL.
ARK_NO_MALLOC if arkode_mem was not allocated.

ARK_ILL_INPUT if one of the inputs to ARKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling ARKStepCreate ()) failed
to set the linear solver-specific Isolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point ¢ and also very near ¢t.
(d) The initial condition violates the inequality constraints.

ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hyip.

ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf) dur-
ing one internal time step or occurred with |h| = hypin.

ARK_LINIT FAIL if the linear solver’s initialization function failed.

ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.
ARK_LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.
ARK_MASSINIT _FAIL if the mass matrix solver’s initialization function failed.
ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.
ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.
ARK_VECTOROP_ERR a vector operation error occurred.

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.
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All failure return values are negative and so testing the return argument for negative values will trap all
ARKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKStepSetStopTime () before the call to ARKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a fsfop time, any future
testing for zstop is disabled (and can be re-enabled only though a new call to ARKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ARKStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

5.2.2.8 Optional input functions

There are numerous optional input parameters that control the behavior of ARKStep, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of ARKStep they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:

* General ARKStep options (Optional inputs for ARKStep),

IVP method solver options (Optional inputs for IVP method selection),

* Step adaptivity solver options (Optional inputs for time step adaptivity),

* Implicit stage solver options (Optional inputs for implicit stage solves),

¢ Linear solver interface options (Linear solver interface optional input functions), and
* Rootfinding options (Rootfinding optional input functions).

For the most casual use of ARKStep, relying on the default set of solver parameters, the reader can skip to section on
user-supplied functions, §5.6.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
call to an ARKStepSet*** function can generally be made from the user’s calling program at any time and, if successful,
takes effect immediately. ARKStepSet*** functions that cannot be called at any time note this in the “Notes:” section

of the function documentation.
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Optional inputs for ARKStep

Optional input

Function name

Default

Return ARKStep parameters to their defaults
Set dense output interpolation type

Set dense output polynomial degree

Supply a pointer to a diagnostics output file
Supply a pointer to an error output file
Supply a custom error handler function
Disable time step adaptivity (fixed-step mode)
Supply an initial step size to attempt
Maximum no. of warnings for ¢,, + h = t,,
Maximum no. of internal steps before fout
Maximum absolute step size

Minimum absolute step size

Set a value for ¢4,

Interpolate at ¢4,

Disable the stop time

Supply a pointer for user data

Maximum no. of ARKStep error test failures
Set ‘optimal’ adaptivity params. for a method
Set inequality constraints on solution

Set max number of constraint failures

ARKStepSetDefaults()
ARKStepSetInterpolantType()

ARKStepSetInterpolantDegree ()
ARKStepSetDiagnostics()
ARKStepSetErrFile()
ARKStepSetErrHandlerFn()
ARKStepSetFixedStep()
ARKStepSetInitStep()
ARKStepSetMaxHnilWarns ()
ARKStepSetMaxNumSteps ()
ARKStepSetMaxStep ()
ARKStepSetMinStep ()
ARKStepSetStopTime ()
ARKStepSetInterpolateStop-
Time()

ARKStepClearStopTime ()
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int ARKStepSetDefaults (void *arkode_mem)

Resets all optional input parameters to ARKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:

Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using ARKStep-

RootInit()).

int ARKStepSetInterpolantType (void *arkode_mem, int itype)

Specifies use of the Lagrange or Hermite interpolation modules (used for dense output — interpolation of solution

output values and implicit method predictors).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* itype — requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)
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Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_MEM_FAIL if the interpolation module cannot be allocated
* ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already been
initialized

Notes:
The Hermite interpolation module is described in §2.2.1, and the Lagrange interpolation module is de-
scribed in §2.2.2.

This routine frees any previously-allocated interpolation module, and re-creates one according to the spec-
ified argument. Thus any previous calls to ARKStepSetInterpolantDegree () will be nullified.

This routine may only be called after the call to ARKStepCreate (). After the first call to ARKStepE-
volve () the interpolation type may not be changed without first calling ARKStepReInit().

If this routine is not called, the Hermite interpolation module will be used.

int ARKStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* degree — requested polynomial degree.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory or interpolation module are NULL
e ARK_INTERP_FAIL if this is called after ARKStepEvolve()
* ARK_ILL INPUT if an argument has an illegal value or the interpolation module has already been
initialized
Notes:
Allowed values are between 0 and 5.

This routine should be called after ARKStepCreate () and before ARKStepEvolve (). After the first call to
ARKStepEvolve () the interpolation degree may not be changed without first calling ARKStepReInit ().

If a user calls both this routine and ARKStepSetInterpolantType(), then ARKStepSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKStep will be the minimum of ¢ — 1 and
the input degree, for ¢ > 1 where g is the order of accuracy for the time integration method.

Changed in version 5.5.1: When ¢ = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.
int ARKStepSetDenseOrder (void *arkode_mem, int dord)

This function is deprecated, and will be removed in a future release. Users should transition to calling ARK-
StepSetInterpolantDegree () instead.
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int ARKStepSetDiagnostics(void *arkode_mem, FILE *diagfp)

Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is written.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* diagfp — pointer to the diagnostics output file.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename () instead.

int ARKStepSetErrFile(void *arkode_mem, FILE *errfp)

Specifies a pointer to the file where all ARKStep warning and error messages will be written if the default internal
error handling function is used.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* errfp — pointer to the output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKStep
memory pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for
subsequent error messages.

int ARKStepSetErrHandlerFn(void *arkode_mem, ARKErrHandlerFn ehfun, void *eh_data)

Specifies the optional user-defined function to be used in handling error messages.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ehfun — name of user-supplied error handler function.

* eh_data — pointer to user data passed to ehfun every time it is called.

Return value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Error messages indicating that the ARKStep solver memory is NULL will always be directed to stderr.

int ARKStepSetFixedStep (void *arkode_mem, realtype hfixed)

Disables time step adaptivity within ARKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since it gives no assurance of the validity of the com-
puted solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKStepSetFixedStep(), any values provided to the functions ARKStepSetInit-
Step(), ARKStepSetAdaptivityFn(), ARKStepSetMaxErrTestFails(), ARKStepSetAdaptiv-
ityMethod(), ARKStepSetCFLFraction(), ARKStepSetErrorBias(), ARKStepSetFixedStep-
Bounds (), ARKStepSetMaxCFailGrowth(), ARKStepSetMaxEFailGrowth(), ARKStepSetMax-
FirstGrowth(), ARKStepSetMaxGrowth(), ARKStepSetMinReduction(), ARKStepSetSafetyFac-
tor(), ARKStepSetSmallNumEFails () and ARKStepSetStabilityFn() will beignored, since tempo-
ral adaptivity is disabled.

If both ARKStepSetFixedStep () and ARKStepSetStopTime () are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep () must be made prior to calling
ARKStepEvolve () to resume integration.

It is not recommended that ARKStepSetFixedStep () be used in concert with ARKStepSetMaxStep ()
or ARKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ARKStepSetInitStep (void *arkode_mem, realtype hin)

Specifies the initial time step size ARKStep should use after initialization, re-initialization, or resetting.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hin — value of the initial step to be attempted (# 0).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
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* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass 0.0 to use the default value.
2
By default, ARKStep estimates the initial step size to be h = ﬂ, where  is estimate of the second
Y

derivative of the solution at ¢g.
This routine will also reset the step size and error history.

int ARKStepSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢ + h = ¢ on the next internal step,
before ARKStep will instead return with an error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

o mxhnil — maximum allowed number of warning messages (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ARKStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ARKStepSetMaxStep (void *arkode_mem, realtype hmax)

Specifies the upper bound on the magnitude of the time step size.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmax — maximum absolute value of the time step size (> 0).

Return value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass himax < 0.0 to set the default value of co.

int ARKStepSetMinStep (void *arkode_mem, realtype hmin)

Specifies the lower bound on the magnitude of the time step size.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass hmin < 0.0 to set the default value of 0.

int ARKStepSetStopTime (void *arkode_mem, realtype tstop)

Specifies the value of the independent variable ¢ past which the solution is not to proceed.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* tstop — stopping time for the integrator.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reenabled
only though a new call to ARKStepSetStopTime()).

A stop time not reached before a call to ARKStepReInit () or ARKStepReset () will remain active but
can be disabled by calling ARKStepClearStopTime().

int ARKStepSetInterpolateStopTime (void *arkode_mem, booleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* interp — flag indicating to use interpolation (1) or copy (0).
Return value:

e ARK SUCCESS if successful
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* ARK_MEM_NULL if the ARKStep memory is NULL
New in version 5.6.0.

int ARKStepClearStopTime (void *arkode_mem)
Disables the stop time set with ARKStepSetStopTime ().

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
The stop time can be reenabled though a new call to ARKStepSetStopTime().

New in version 5.5.1.

int ARKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* user_data — pointer to the user data.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:

If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before any
calls to ARKStepSetLinearSolver () and/or ARKStepSetMassLinearSolver().

int ARKStepSetMaxErrTestFails (void *arkode_mem, int maxnef)

Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 7; set maxnef < 0 to specify this default.
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int ARKStepSetOptimalParams (void *arkode_mem)

Sets all adaptivity and solver parameters to our “best guess” values for a given integration method type (ERK,
DIRK, ARK) and a given method order.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Should only be called after the method order and integration method have been set. The “optimal” val-
ues resulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all
problems are different, so these values may not be optimal for all users.

int ARKStepSetConstraints(void *arkode_mem, N_Vector constraints)

Specifies a vector defining inequality constraints for each component of the solution vector y.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* constraints — vector of constraint flags. Each component specifies the type of solution constraint:

0.0 = no constraint is imposed on y;,
1.0 = y =0,
constraints[i] = -1.0 = y; <0,
20 = y; >0,
—-20 = y; <0.

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ARKStepResize() inequality constraint checking will be disabled and a call to ARK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ARKStepSetConstraints() and ARKStepSet-
FixedStep () are incompatible, and should not be used simultaneously.

int ARKStepSetMaxNumConstrFails (void *arkode_mem, int maxfails)

Specifies the maximum number of constraint failures in a step before ARKStep will return with an error.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
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* maxfails — maximum allowed number of constrain failures.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
Passing maxfails <= 0 results in ARKStep using the default value (10).

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder () 4

Specify implicit/explicit problem ARKStepSetImEx() SUNTRUE
Specify explicit problem ARKStepSetExplicit() SUNFALSE
Specify implicit problem ARKStepSetImplicit() SUNFALSE
Set additive RK tables ARKStepSetTables() internal
Set additive RK tables via their numbers ARKStepSetTableNum() internal
Set additive RK tables via their names ARKStepSetTableName() internal

int ARKStepSetOrder (void *arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ord —requested order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes:

For explicit methods, the allowed values are 2 < ord < 8. For implicit methods, the allowed values are
2 < ord < 5, and for ImEx methods the allowed values are 2 < ord < 5. Any illegal input will result in

the default value of 4.

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed
after the first call to ARKStepEvolve (), unless ARKStepReInit () is called.

int ARKStepSetImEx (void *arkode_mem)

Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge—Kutta

method.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
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* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is automatically deduced when neither of the function pointers fe or fi passed to ARKStepCreate ()
are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit(void *arkode_mem)

Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is automatically deduced when the function pointer fi passed to ARKStepCreate () is NULL, but may
be set directly by the user if desired.

If the problem is posed in explicit form, i.e. § = f(¢, y), then we recommend that the ERKStep time-stepper
module be used instead.

int ARKStepSetImplicit(void *arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is automatically deduced when the function pointer fe passed to ARKStepCreate () is NULL, but may
be set directly by the user if desired.

int ARKStepSetTables (void *arkode_mem, int q, int p, ARKodeButcherTable Bi, ARKodeButcherTable Be)
Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
¢ g — global order of accuracy for the ARK method.
* p — global order of accuracy for the embedded ARK method.
* Bi — the Butcher table for the implicit RK method.
* Be — the Butcher table for the explicit RK method.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
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* ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables, see
§6.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit (). However, if
the problem is posed in explicit form, i.e. § = f(¢,y), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSetImplicit().
If both Bi and Be are provided, this routine automatically calls ARKStepSetImEx ().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of ¢ and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If
both Bi and Be are non-NULL (e.g, an ImEx method is provided) then the input values of g and p are used
as the order of the ARK method may be less than the orders of the individual tables. No error checking is
performed to ensure that either p or ¢ correctly describe the coefficients that were input.

Error checking is subsequently performed at ARKStep initialization to ensure that Bi and Be (if non-NULL)
specify DIRK and ERK methods, respectively. Specifically, the A member of Bi must be lower triangular
with at least one nonzero value on the diagonal, and the A member of Be must be strictly lower triangular.
When both Bi and Be are non-NULL, they must agree on the number of internal stages, i.e., the stages
members of both structures must match.

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is
non-NULL), the user must call ARKStepSetFixedStep() to enable fixed-step mode and set the desired
time step size.

int ARKStepSetTableNum(void *arkode_mem, ARKODE_DIRKTuablelD itable, ARKODE_ERKTuablelD etable)

Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
¢ jtable — index of the DIRK Butcher table.
e etable — index of the ERK Butcher table.

Return value:

e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:

The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §15.

To choose an explicit table, set itable to a negative value. This automatically calls ARKStepSetEx-
plicit(). However, if the problem is posed in explicit form, i.e. § = f(¢,y), then we recommend
that the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed
in §15.3. This automatically calls ARKStepSetImEx ().

In all cases, error-checking is performed to ensure that the tables exist.
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int ARKStepSetTableName (void *arkode_mem, const char *itable, const char *etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* itable — name of the DIRK Butcher table.
* etable — name of the ERK Butcher table.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §15. This function is case sensitive.

To choose an explicit table, set itable to "ARKODE_DIRK_NONE". This automatically calls ARKStepSet-
Explicit(). However, if the problem is posed in explicit form, i.e. ¥ = f(¢,y), then we recommend that
the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to "ARKODE_ERK_NONE". This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are not none, then these should match an existing implicit/explicit pair, listed in
§15.3. This automatically calls ARKStepSetImEx ().

In all cases, error-checking is performed to ensure that the tables exist.

Optional inputs for time step adaptivity

The mathematical explanation of ARKODE'’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.8.

Optional input Function name Default
Set a custom time step adaptivity function ARKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ARKStepSetAdaptivityMethod() O
Explicit stability safety factor ARKStepSetCFLFraction() 0.5
Time step error bias factor ARKStepSetErrorBias() 1.5
Bounds determining no change in step size ARKStepSetFixedStepBounds () 1.0 1.5
Maximum step growth factor on convergence fail ARKStepSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKStepSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ARKStepSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ARKStepSetMinReduction() 0.1
Time step safety factor ARKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ARKStepSetSmallNumEFails () 2
Explicit stability function ARKStepSetStabilityFn() none
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int ARKStepSetAdaptivityFn(void *arkode_mem, ARKAdaptFn hfun, void *h_data)

Sets a user-supplied time-step adaptivity function.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ARKStepSetStabilityFn() should be used instead.

int ARKStepSetAdaptivityMethod (void *arkode_mem, int imethod, int idefault, int pq, realtype *adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pq—flag denoting whether to use the embedding order of accuracy p (0) or the method order of accuracy
q (1) within the adaptivity algorithm. p is the default.

* adapt_params[0] — k; parameter within accuracy-based adaptivity algorithms.

* adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params[2] — ks parameter within accuracy-based adaptivity algorithms.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ARKStepSetAdaptivityFn().

int ARKStepSetCFLFraction(void *arkode_mem, realtype cfl_frac)

Specifies the fraction of the estimated explicitly stable step to use.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
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Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ARKStepSetErrorBias (void *arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value below 1.0 will imply a reset to the default value.

int ARKStepSetFixedStepBounds (void *arkode_mem, realtype b, realtype ub)

Specifies the step growth interval in which the step size will remain unchanged.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* [b — lower bound on window to leave step size fixed (default is 1.0).

* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any interval not containing 1.0 will imply a reset to the default values.

int ARKStepSetMaxCFailGrowth(void *arkode_mem, realtype etact)

Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step, 7. from §2.11.3.1.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etacf — time step reduction factor on a nonlinear solver convergence failure (default is 0.25).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
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* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxEFailGrowth(void *arkode_mem, realtype etamxf)

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

e arkode_mem — pointer to the ARKStep memory block.

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxFirstGrowth(void *arkode_mem, realtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.

int ARKStepSetMaxGrowth (void *arkode_mem, realtype mx_growth)

Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mx_growth — maximum allowed growth factor between consecutive time steps (default is 20.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.
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int ARKStepSetMinReduction(void *arkode_mem, realtype eta_min)

Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* eta_min — minimum allowed reduction factor in time step after an error test failure (default is 0.1).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value outside the interval (0, 1) will imply a reset to the default value.

int ARKStepSetSafetyFactor (void *arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value < 0 will imply a reset to the default value.

int ARKStepSetSmallNumEFails (void *arkode_mem, int small_nef)

Specifies the threshold for “multiple” successive error failures before the efamxf parameter from ARKStepSet-
MaxEFailGrowth() is applied.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* small_nef —bound to determine ‘multiple’ for etamxf (default is 2).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value < 0 will imply a reset to the default value.

int ARKStepSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

Arguments:
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* arkode_mem — pointer to the ARKStep memory block.

e EStab — name of user-supplied stability function.

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient
for retaining stability, but this can be quite useful for problems where the explicit right-hand side function
fE(t,y) contains stiff terms.

Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by ARKStep, including how each of the param-
eters below is used within the code, is provided in §2.11.1.

Optional input Function name Default
Specify that f is linearly implicit ARKStepSetLinear() SUNFALSE
Specify that f! is nonlinearly implicit ARKStepSetNonlinear() SUNTRUE
Implicit predictor method ARKStepSetPredictorMethod() 0
User-provided implicit stage predictor ARKStepSetStagePredictFn() NULL
RHS function for nonlinear system evaluations = ARKStepSetN1sRhsFn() NULL
Maximum number of nonlinear iterations ARKStepSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test ARKStepSetNonlinConvCoef () 0.1
Nonlinear convergence rate constant ARKStepSetNonlinCRDown () 0.3
Nonlinear residual divergence ratio ARKStepSetNonlinRDiv() 2.3
Maximum number of convergence failures ARKStepSetMaxConvFails() 10

Specify if £ is deduced after a nonlinear solve ~ARKStepSetDeducelImplicitRhs() SUNFALSE

int ARKStepSetLinear (void *arkode_mem, int timedepend)

Specifies that the implicit portion of the problem is linear.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* timedepend — flag denoting whether the Jacobian of f!(t,v) is time-dependent (1) or not (0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Tightens the linear solver tolerances and takes only a single Newton iteration. Calls ARKStepSetDelt-
aGammalMax () to enforce Jacobian recomputation when the step size ratio changes by more than 100 times
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the unit roundoff (since nonlinear convergence is not tested). Only applicable when used in combination
with the modified or inexact Newton iteration (not the fixed-point solver).

When f1(t,y) is time-dependent, all linear solver structures (Jacobian, preconditioner) will be updated
preceding each implicit stage. Thus one must balance the relative costs of such recomputation against the
benefits of requiring only a single Newton linear solve.

int ARKStepSetNonlinear (void *arkode_mem)

Specifies that the implicit portion of the problem is nonlinear.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is the default behavior of ARKStep, so the function is primarily useful to undo a previous call to
ARKStepSetLinear (). Calls ARKStepSetDel taGammaMax () to reset the step size ratio threshold to the
default value.

int ARKStepSetPredictorMethod (void *arkode_mem, int method)
Specifies the method from §2.11.5 to use for predicting implicit solutions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
¢ method — method choice (0 < method < 4):
— 0is the trivial predictor,

1 is the maximum order (dense output) predictor,

2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step. deprecated

5 is the minimum correction predictor, that uses all preceding stage information within the current
step for prediction. deprecated

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 0. If method is set to an undefined value, this default predictor will be used.

Options 4 and 5 are currently not supported when solving a problem involving a non-identity mass matrix.
In that case, selection of method as 4 or 5 will instead default to the trivial predictor (method 0). Both of
these options have been deprecated, and will be removed from a future release.

5.2. Using the ARKStep time-stepping module 121



User Documentation for ARKODE, v5.6.0

int ARKStepSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)

Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* PredictStage — name of user-supplied predictor function. If NULL, then any previously-provided stage
prediction function will be disabled.

Return value:
e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
See §5.6.7 for more information on this user-supplied routine.

int ARKStepSetNlsRhsFn(void *arkode_mem, ARKRAsFn nls_fi)

Specifies an alternative implicit right-hand side function for evaluating f7 (¢, %) within nonlinear system function
evaluations (2.23) - (2.25).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nis_fi — the alternative C function for computing the right-hand side function f(#,y) in the ODE.
Return value:

e ARK SUCCESS if successful.

* ARK_MEM_NULL if the ARKStep memory was NULL.

Notes:

The default is to use the implicit right-hand side function provided to ARKStepCreate() in nonlinear
system functions. If the input implicit right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after ARKStepSetNonlinear-
Solver().

int ARKStepSetMaxNonlinIters (void *arkode_mem, int maxcor)

Specifies the maximum number of nonlinear solver iterations permitted per implicit stage solve within each time
step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* maxcor — maximum allowed solver iterations per stage (> 0).

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value or if the SUNNONLINSOL module is NULL

* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes:
The default value is 3; set maxcor < 0 to specify this default.

122 Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

int ARKStepSetNonlinConvCoef (void *arkode_mem, realtype nlscoef)

Specifies the safety factor e used within the nonlinear solver convergence test (2.37).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nlscoef — coefficient in nonlinear solver convergence test (> 0.0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 0.1; set nlscoef < 0 to specify this default.

int ARKStepSetNonlinCRDown (void *arkode_mem, realtype crdown)
Specifies the constant ¢, used in estimating the nonlinear solver convergence rate (2.36).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* crdown — nonlinear convergence rate estimation constant (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ARKStepSetNonlinRDiv (void *arkode_mem, realtype rdiv)

Specifies the nonlinear correction threshold r4;,, from (2.38), beyond which the iteration will be declared diver-
gent.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rdiv — tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ARKStepSetMaxConvFails (void *arkode_mem, int maxncf)

Specifies the maximum number of nonlinear solver convergence failures permitted during one step, maZ .y
from §2.11.3.1, before ARKStep will return with an error.

Arguments:
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* arkode_mem — pointer to the ARKStep memory block.

* maxncf — maximum allowed nonlinear solver convergence failures per step (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 10; set maxncf < 0 to specify this default.

Upon each convergence failure, ARKStep will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor efacf (set
within ARKStepSetMaxCFailGrowth()).

int ARKStepSetDeduceImplicitRhs (void *arkode_mem, sunbooleantype deduce)
Specifies if implicit stage derivatives are deduced without evaluating f/. See §2.11.1 for more details.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* deduce —If SUNFALSE (default), the stage derivative is obtained by evaluating f! with the stage solution
returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced without an additional
evaluation of f7.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL

New in version 5.2.0.

Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to ARKStep is provided in §2.11.2. We group
the user-callable routines into four categories: general routines concerning the update frequency for matrices and/or
preconditioners, optional inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and op-
tional inputs for iterative linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive,
whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLS linear solver interface

As discussed in §2.11.2.3, ARKODE strives to reuse matrix and preconditioner data for as many solves as possible
to amortize the high costs of matrix construction and factorization. To that end, ARKStep provides user-callable
routines to modify this behavior. Recall that the Newton system matrices that arise within an implicit stage solve are

A(t,z) = M(t) — vJ(t, z), where the implicit right-hand side function has Jacobian matrix J (¢, z) = W.

The matrix or preconditioner for .4 can only be updated within a call to the linear solver “setup” routine. In general,
the frequency with which the linear solver setup routine is called may be controlled with the msbp argument to ARK-
StepSetLSetupFrequency (). When this occurs, the validity of A for successive time steps intimately depends on
whether the corresponding « and .J inputs remain valid.

At each call to the linear solver setup routine the decision to update .4 with a new value of , and to reuse or reevaluate
Jacobian information, depends on several factors including:
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* the success or failure of previous solve attempts,

* the success or failure of the previous time step attempts,

* the change in 7 from the value used when constructing .4, and

* the number of steps since Jacobian information was last evaluated.

Jacobian information is considered out-of-date when msbj or more steps have been completed since the last update,
in which case it will be recomputed during the next linear solver setup call. The value of msbj is controlled with the
msbj argument to ARKStepSetJacEvalFrequency().

For linear-solvers with user-supplied preconditioning the above factors are used to determine whether to recommend
updating the Jacobian information in the preconditioner (i.e., whether to set jok to SUNFALSE in calling the user-supplied

ARKLsPrecSetupFn()). For matrix-based linear solvers these factors determine whether the matrix J(¢,y) = w
should be updated (either with an internal finite difference approximation or a call to the user-supplied ARKLsJacFn);
if not then the previous value is reused and the system matrix A(t,y) ~ M (t) — vJ(t,y) is recomputed using the
current v value.

Table 5.1: Optional inputs for the ARKLS linear solver interface

Optional input Function name Default
Max change in step signaling new J ARKStepSetDeltaGammalMax () 0.2
Linear solver setup frequency ARKStepSetLSetupFrequency () 20

Jacobian / preconditioner update frequency ARKStepSetJacEvalFrequency() 51

int ARKStepSetDeltaGammaMax (void *arkode_mem, realtype dgmax)

Specifies a scaled step size ratio tolerance, A~,,q, from §2.11.2.3, beyond which the linear solver setup routine
will be signaled.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* dgmax — tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL _INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ARKStepSetLSetupFrequency (void *arkode_mem, int msbp)

Specifies the frequency of calls to the linear solver setup routine, msbp from §2.11.2.3.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* msbp — the linear solver setup frequency.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
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Notes:
Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the
setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at
each implicit stage.

int ARKStepSetJacEvalFrequency (void *arkode_mem, long int msbj)

Specifies the number of steps after which the Jacobian information is considered out-of-date, msbj from
§2.11.2.3.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* msbj — the Jacobian re-computation or preconditioner update frequency.
Return value:

* ARKLS_SUCCESS if successful.

* ARKLS_MEM_NULL if the ARKStep memory was NULL.

* ARKLS_LMEM_NULL if the linear solver memory was NULL.

Notes:
If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current
step number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the
next linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.11.2.3 for more information on when linear solver setups are performed.

Passing a value msbj < 0 indicates to use the default value of 51.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function ARKStepSetJacFn() DQ
Linear system function ARKStepSetLinSysFn() internal
Mass matrix function ARKStepSetMassFn() none

Enable or disable linear solution scaling ARKStepSetLinearSolutionScaling() on

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix J (¢, y) or the linear system A(t,y) = M (t) — vJ (¢, y).

For J(t,y), the ARKLS interface is packaged with a routine that can approximate J if the user has selected either the
SUNMATRIX_DENSE or SUNMATRIX_BAND objects. Alternatively, the user can supply a custom Jacobian function
of type ARKLsJacFn () — this is required when the user selects other matrix formats. To specify a user-supplied Jacobian
function, ARKStep provides the function ARKStepSetJjacFn().

Alternatively, a function of type ARKLsLinSysFn () can be provided to evaluate the matrix A(¢, ). By default, ARKLS
uses an internal linear system function leveraging the SUNMATRIX API to form the matrix A(¢, y) by combining the
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matrices M (t) and J(¢,y). To specify a user-supplied linear system function instead, ARKStep provides the function
ARKStepSetLinSysFn().

If the ODE system involves a non-identity mass matrix, M # I, matrix-based linear solver modules require a function
to compute an approximation to the mass matrix M (¢). There is no default difference quotient approximation (for any
matrix type), so this routine must be supplied by the user. This function must be of type ARKLsMassFn (), and should
be set using the function ARKStepSetMassFn().

In either case (J (¢, y) versus A(t, y) is supplied) the matrix information will be updated infrequently to reduce matrix
construction and, with direct solvers, factorization costs. As a result the value of v may not be current and a scaling
factor is applied to the solution of the linear system to account for the lagged value of . See §10.2.1 for more details.
The function ARKStepSetLinearSolutionScaling () can be used to disable this scaling when necessary, e.g., when
providing a custom linear solver that updates the matrix using the current y as part of the solve.

The ARKLS interface passes the user data pointer to the Jacobian, linear system, and mass matrix functions. This
allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian, linear system or mass matrix functions, without using global data in the program. The user
data pointer may be specified through ARKStepSetUserData().

int ARKStepSetJacFn(void *arkode_mem, ARKLsJacFn jac)

Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* jac — name of user-supplied Jacobian approximation function.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for the SUNMATRIX_DENSE and SUN-
MATRIX_BAND modules. If NULL is passed in for jac, this default is used. An error will occur if no jac is
supplied when using other matrix types.

The function type ARKLsJacFn () is described in §5.6.
int ARKStepSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)

Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* linsys — name of user-supplied linear system approximation function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL
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Notes:
This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form
the system M — ~J. If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.6.

int ARKStepSetMassFn(void *arkode_mem, ARKLsMassFn mass)
Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

e arkode_mem — pointer to the ARKStep memory block.

* mass — name of user-supplied mass matrix approximation function.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL

* ARKLS_ILL_INPUT if an argument has an illegal value

Notes:
This routine must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.
The function type ARKLsMassFn() is described in §5.6.

int ARKStepSetLinearSolutionScaling(void *arkode_mem, booleantype onoff)

Enables or disables scaling the linear system solution to account for a change in -y in the linear system. For more
details see §10.2.1.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* onoff — flag to enable (SUNTRUE) or disable (SUNFALSE) scaling
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

e ARKLS_ILL_INPUT if the attached linear solver is not matrix-based

Notes:
Linear solution scaling is enabled by default when a matrix-based linear solver is attached.
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Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
Jv functions (jtimes and jtsetup) ARKStepSetJacTimes () DQ, none
Jv DQ rhs function (jtimesRhsFn) ARKStepSetJacTimesRhsFn() fi

Mw functions (mtimes and mtsetup) ARKStepSetMassTimes () none, none

As described in §2.11.2, when solving the Newton linear systems with matrix-free methods, the ARKLS interface
requires a jrimes function to compute an approximation to the product between the Jacobian matrix J (¢, y) and a vector
v. The user can supply a custom Jacobian-times-vector approximation function, or use the default internal difference
quotient function that comes with the ARKLS interface.

A user-defined Jacobian-vector function must be of type ARKLsJacTimesVecFn and can be specified through a call to
ARKStepSetJacTimes () (see §5.6 for specification details). As with the user-supplied preconditioner functions, the
evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done in
the optional user-supplied function of type ARKLsJacTimesSetupFn (see §5.6 for specification details). As with the
preconditioner functions, a pointer to the user-defined data structure, user_data, specified through ARKStepSetUser-
Data() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and product functions each time
they are called.

int ARKStepSetJacTimes (void *arkode_mem, ARKLsJacTimesSetupFn jtsetap, ARKLsJacTimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* jtsetup — user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.
* jtimes — user-defined Jacobian-vector product function.

Return value:

e ARKLS_SUCCESS if successful.

ARKLS_MEM_NULL if the ARKStep memory was NULL.

ARKLS_LMEM_NULL if the linear solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

* ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the SUN-
LinearSolver object used by the ARKLS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.6.

When using the internal difference quotient the user may optionally supply an alternative implicit right-hand side
function for use in the Jacobian-vector product approximation by calling ARKStepSetJacTimesRhsFn(). The alter-
native implicit right-hand side function should compute a suitable (and differentiable) approximation to the f! function
provided to ARKStepCreate (). For example, as done in [34], the alternative function may use lagged values when
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evaluating a nonlinearity in f! to avoid differencing a potentially non-differentiable factor. We note that in many in-
stances this same f! routine would also have been desirable for the nonlinear solver, in which case the user should
specify this through calls to both ARKStepSetJacTimesRhsFn() and ARKStepSetNIsRhsFn().

int ARKStepSetJacTimesRhsFn(void *arkode_mem, ARKRhsFn jtimesRhsFn)

Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* jtimesRhsFn — the name of the C function (of type ARKRhsFn()) defining the alternative right-hand
side function.

Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
The default is to use the implicit right-hand side function provided to ARKStepCreate() in the internal
difference quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Similarly, if a problem involves a non-identity mass matrix, M # I, then matrix-free solvers require a mtimes function
to compute an approximation to the product between the mass matrix M () and a vector v. This function must be user-
supplied since there is no default value, it must be of type ARKLsMassTimesVecFn(), and can be specified through a
call to the ARKStepSetMassTimes () routine. Similarly to the user-supplied preconditioner functions, any evaluation
and processing of any mass matrix-related data needed by the user’s mass-matrix-times-vector function may be done
in an optional user-supplied function of type ARKLsMassTimesSetupFn (see §5.6 for specification details).

int ARKStepSetMassTimes (void *arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLsMassTimesVecFn
mtimes, void *mtimes_data)

Specifies the mass matrix-times-vector setup and product functions.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mtsetup — user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.

* mtimes — user-defined mass matrix-vector product function.

* mtimes_data — a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.
Return value:

* ARKLS_SUCCESS if successful.

* ARKLS_MEM_NULL if the ARKStep memory was NULL.

* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.
ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKLS interface.
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Notes:
There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver interface
with NULL-valued SUNMATRIX input M, and this routine is called with NULL-valued mtimes, an error
will occur. A user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in §5.6.

Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions ARKStepSetPreconditioner () NULL, NULL
Mass matrix preconditioning functions ARKStepSetMassPreconditioner() NULL, NULL
Newton linear and nonlinear tolerance ratio ARKStepSetEpsLin() 0.05

Mass matrix linear and nonlinear tolerance ratio ARKStepSetMassEpsLin() 0.05

Newton linear solve tolerance conversion factor ARKStepSetLSNormFactor () vector length
Mass matrix linear solve tolerance conversion factor ARKStepSetMassLSNormFactor () vector length

As described in §2.11.2, when using an iterative linear solver the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve, that are supplied to
ARKStep using either the function ARKStepSetPreconditioner () (for preconditioning the Newton system), or the
function ARKStepSetMassPreconditioner () (for preconditioning the mass matrix system). The psetup function
supplied to these routines should handle evaluation and preprocessing of any Jacobian or mass-matrix data needed by
the user’s preconditioner solve function, psolve. The user data pointer received through ARKStepSetUserData() (or a
pointer to NULL if user data was not specified) is passed to the psefup and psolve functions. This allows the user to create
an arbitrary structure with relevant problem data and access it during the execution of the user-supplied preconditioner
functions without using global data in the program. If preconditioning is supplied for both the Newton and mass matrix
linear systems, it is expected that the user will supply different psetup and psolve function for each.

Also, as described in §2.11.3.2, the ARKLS interface requires that iterative linear solvers stop when the norm of the
preconditioned residual satisfies

€L €

10
where the default e;, = 0.05 may be modified by the user through the ARKStepSetEpsLin() function.

Il <

int ARKStepSetPreconditioner (void *arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrecSolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is needed.
¢ psolve — user-defined preconditioner solve function.
Return value:
* ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
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* ARKLS_ILL_INPUT if an input has an illegal value.

* ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.6.

int ARKStepSetMassPreconditioner (void *arkode_mem, ARKLsMassPrecSetupFn psetup,
ARKLsMassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is to be done.
* psolve — user-defined preconditioner solve function.
Return value:
* ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are described in
§5.6.

int ARKStepSetEpsLin(void *arkode_mem, realtype eplifac)

Specifies the factor €7, by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the
linear iteration.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eplifac — linear convergence safety factor.
Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.
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Notes:
Passing a value eplifac < 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

int ARKStepSetMassEpsLin(void *arkode_mem, realtype eplifac)

Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eplifac — linear convergence safety factor.
Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Passing a value eplifac < 0 indicates to use the default value of 0.05.

Since iterative linear solver libraries typically consider linear residual tolerances using the Lo norm, whereas ARKODE
focuses on errors measured in the WRMS norm (2.15), the ARKLS interface internally converts between these quan-
tities when interfacing with linear solvers,

tolo = nrmfac toly gass- 5.1

Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 the value of nrm fac was computed using the
vector dot product. Now, the functions ARKStepSetLSNormFactor () and ARKStepSetMassLSNormFactor () allow
for additional user control over these conversion factors.

int ARKStepSetLSNormFactor (void *arkode_mem, realtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves.

Arguments:
e arkode_mem — pointer to the ARKStep memory block.
* nrmfac — the norm conversion factor. If nrmfac is:
> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (defaulr).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac = sqrt(N_-

VDotProd(v,v)) where all the entries of v are one.
Return value:
e ARK _SUCCESS if successful.
* ARK_MEM_NULL if the ARKStep memory was NULL.
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Notes:
This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

int ARKStepSetMassLSNormFactor (void *arkode_mem, realtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for mass matrix linear system solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e nrmfac — the norm conversion factor. If nrmfac is:
> (0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac = sqrt(N_-

VDotProd(v,v)) where all the entries of v are one.
Return value:
e ARK SUCCESS if successful.
e ARK_MEM_NULL if the ARKStep memory was NULL.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in §2.12.

Optional input Function name Default
Direction of zero-crossings to monitor ARKStepSetRootDirection() both
Disable inactive root warnings ARKStepSetNoInactiveRootWarn() enabled

int ARKStepSetRootDirection(void *arkode_mem, int *rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rootdir — state array of length nrtfn, the number of root functions g; (the value of nrtfn was supplied
in the call to ARKStepRootInit()). If rootdir[i] == O then crossing in either direction for g;
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
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Notes:
The default behavior is to monitor for both zero-crossing directions.

int ARKStepSetNoInactiveRootWarn(void *arkode _mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
ARKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the
initial time (i.e., g; is zero at the initial time and after the first step), ARKStep will issue a warning which
can be disabled with this optional input function.

5.2.2.9 Interpolated output function

An optional function ARKStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ARKStepEvolve(), as it provides interpolated values
either of y or of its derivatives (up to the 5th derivative) interpolated to any value of ¢ in the last internal step taken by
ARKStepEvolve(). Internally, this “dense output” or “continuous extension” algorithm is identical to the algorithm
used for the maximum order implicit predictors, described in §2.11.5.2, except that derivatives of the polynomial model
may be evaluated upon request.

int ARKStepGetDky (void *arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function ¥ at the time 7, i.e. y*) (t), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ARKStepSetInterpolantDegree (). The user may request k in the range
{0,..., min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* t —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
e ARK SUCCESS if successful
* ARK_BAD_K if k is not in the range {O0,..., min(degree, kmax)}.
* ARK_BAD_T if t is not in the interval [¢,, — h,,, t,,]
ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ARKStep memory is NULL
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Notes:
It is only legal to call this function after a successful return from ARKStepEvolve().

A user may access the values t,, and h,, via the functions ARKStepGetCurrentTime () and ARKStepGet-
LastStep(), respectively.

5.2.2.10 Optional output functions

ARKStep provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1.

A

General ARKStep output routines are in §5.2.2.10,

ARKStep implicit solver output routines are in §5.2.2.10,
Output routines regarding root-finding results are in §5.2.2.10,
Linear solver output routines are in §5.2.2.10 and

General usability routines (e.g. to print the current ARKStep parameters, or output the current Butcher table(s))
are in §5.2.2.10.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of various
methods inside ARKStep. For example:

The counters nsteps, nfe_evals and nfi_evals provide a rough measure of the overall cost of a given run, and can
be compared between runs with different solver options to suggest which set of options is the most efficient.

The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the ratio
nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian or pre-
conditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-vector product
routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is inaccurate.

The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps, and hence a lower ratio.

The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.
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Main solver optional output functions

Optional output

Function name

Size of ARKStep real and integer workspaces
Cumulative number of internal steps

Actual initial time step size used

Step size used for the last successful step

Step size to be attempted on the next step
Current internal time reached by the solver
Current internal solution reached by the solver

Current ~ value used by the solver

Suggested factor for tolerance scaling

Error weight vector for state variables
Residual weight vector

Single accessor to many statistics at once
Print all statistics

Name of constant associated with a return flag

. of explicit stability-limited steps

. of accuracy-limited steps

. of attempted steps

. of calls to fe and fi functions

. of local error test failures that have occurred

. of failed steps due to a nonlinear solver failure

Current ERK and DIRK Butcher tables
Estimated local truncation error vector
Single accessor to many statistics at once
Number of constraint test failures
Retrieve a pointer for user data

ARKStepGetliorkSpace ()
ARKStepGetNumSteps()
ARKStepGetActualInitStep()
ARKStepGetLastStep()
ARKStepGetCurrentStep()
ARKStepGetCurrentTime ()
ARKStepGetCurrentState()
ARKStepGetCurrentGamma ()
ARKStepGetTolScaleFactor()
ARKStepGetErrWeights ()
ARKStepGetReslWeights ()
ARKStepGetStepStats()
ARKStepPrintAllStats()
ARKStepGetReturnFlagName ()
ARKStepGetNumExpSteps ()
ARKStepGetNumAccSteps()
ARKStepGetNumStepAttempts ()
ARKStepGetNumRhsEvals()
ARKStepGetNumErrTestFails()
ARKStepGetNumStepSolveFails()
ARKStepGetCurrentButcherTables()
ARKStepGetEstLocalErrors()
ARKStepGetTimestepperStats()
ARKStepGetNumConstrFails ()
ARKStepGetUserData()

int ARKStepGetWorkSpace (void *arkode_mem, long int *lenrw, long int *leniw)

Returns

the ARKStep real and integer workspace sizes.

Arguments:

Return

e arkode_mem — pointer to the ARKStep memory block.

* lenrw — the number of realtype values in the ARKStep workspace.

¢ Jeniw — the number of integer values in the ARKStep workspace.

value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumSteps (void *arkode_mem, long int *nsteps)

Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

Return

* arkode_mem — pointer to the ARKStep memory block.

* nsteps — number of steps taken in the solver.

value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetActualInitStep (void *arkode_mem, realtype *hinused)
Returns the value of the integration step size used on the first step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hinused — actual value of initial step size.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Notes:

Even if the value of the initial integration step was specified by the user through a call to ARKStepSetInit-
Step (), this value may have been changed by ARKStep to ensure that the step size fell within the prescribed
bounds (Apmin < ho < hmaz), O to satisfy the local error test condition, or to ensure convergence of the

nonlinear solver.

int ARKStepGetLastStep(void *arkode_mem, realtype *hlast)

Returns the integration step size taken on the last successful internal step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hlast — step size taken on the last internal step.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentStep (void *arkode_mem, realtype *hcur)

Returns the integration step size to be attempted on the next internal step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hcur — step size to be attempted on the next internal step.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentTime (void *arkode_mem, realtype *tcur)
Returns the current internal time reached by the solver.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e tcur — current internal time reached.

Return value:

e ARK SUCCESS if successful
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* ARK_MEM_NULL if the ARKStep memory was NULL
int ARKStepGetCurrentState (void *arkode_mem, N_Vector *ycur)

Returns the current internal solution reached by the solver.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e ycur — current internal solution.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
Users should exercise extreme caution when using this function, as altering values of ycur may lead to
undesirable behavior, depending on the particular use case and on when this routine is called.

int ARKStepGetCurrentGamma (void *arkode_mem, realtype *gamma)
Returns the current internal value of « used in the implicit solver Newton matrix (see equation (2.30)).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* gamma — current step size scaling factor in the Newton system.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetTolScaleFactor (void *arkode_mem, realtype *tolsfac)

Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:
¢ arkode_mem — pointer to the ARKStep memory block.
* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
int ARKStepGetErrWeights (void *arkode_mem, N_Vector eweight)

Returns the current error weight vector.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eweight — solution error weights at the current time.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
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Notes:
The user must allocate space for eweight, that will be filled in by this function.

int ARKStepGetResWeights (void *arkode_mem, N_Vector rweight)
Returns the current residual weight vector.

Arguments:
¢ arkode_mem — pointer to the ARKStep memory block.
* rweight — residual error weights at the current time.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for rweight, that will be filled in by this function.

int ARKStepGetStepStats(void *arkode_mem, long int *nsteps, realtype *hinused, realtype *hlast, realtype *hcur,
realtype *tcur)

Returns many of the most useful optional outputs in a single call.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nsteps — number of steps taken in the solver.
* hinused — actual value of initial step size.
* hlast — step size taken on the last internal step.
* hcur — step size to be attempted on the next internal step.
* tcur — current internal time reached.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* outfile — pointer to output file.
e fimt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., key1,
valuel,key2,value2,...

Return value:
* ARK_SUCCESS - if the output was successfully.
* ARK_MEM_NULL - if the ARKStep memory was NULL.
* ARK_ILL_INPUT - if an invalid formatting option was provided.
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Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 5.2.0.

char *ARKStepGetReturnFlagName (long int flag)
Returns the name of the ARKStep constant corresponding to flag. See Appendix: ARKODE Constants.

Arguments:
* flag — areturn flag from an ARKStep function.
Return value: The return value is a string containing the name of the corresponding constant.

int ARKStepGetNumExpSteps (void *arkode_mem, long int *expsteps)

Returns the cumulative number of stability-limited steps taken by the solver (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* expsteps — number of stability-limited steps taken in the solver.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumAccSteps (void *arkode_mem, long int *accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumStepAttempts (void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* step_attempts — number of steps attempted by solver.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumRhsEvals (void *arkode_mem, long int *nfe_evals, long int *nfi_evals)

Returns the number of calls to the user’s right-hand side functions, f¥ and f! (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
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* nfe_evals — number of calls to the user’s f(¢,y) function.

* nfi_evals — number of calls to the user’s f(¢,y) function.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The nfi_evals value does not account for calls made to f! by a linear solver or preconditioner module.

int ARKStepGetNumErrTestFails(void *arkode_mem, long int *netfails)

Returns the number of local error test failures that have occurred (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* netfails — number of error test failures.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumStepSolveFails (void *arkode_mem, long int *ncnf)

Returns the number of failed steps due to a nonlinear solver failure (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ncnf — number of step failures.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentButcherTables (void *arkode_mem, ARKodeButcherTable *Bi, ARKodeButcherTable
*Be)

Returns the explicit and implicit Butcher tables currently in use by the solver.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* Bi — pointer to the implicit Butcher table structure.

* Be — pointer to the explicit Butcher table structure.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory was NULL

Note: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKStepButcherTableMem {

int q; /* method order of accuracy %/

(continues on next page)
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(continued from previous page)

int p; /* embedding order of accuracy */
int stages; /% number of stages %/
realtype **A; /* Butcher table coefficients %/
realtype *c; /* canopy node coefficients %/
realtype *b; /* root node coefficients %/
realtype *d; /* embedding coefficients %/

} *ARKStepButcherTable;

For more details see §6.

int ARKStepGetEstLocalErrors (void *arkode_mem, N_Vector ele)

Returns the vector of estimated local truncation errors for the current step.

Argumen

ts:
arkode_mem — pointer to the ARKStep memory block.

ele — vector of estimated local truncation errors.

Return value:
e ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

Notes:

The user must allocate space for ele, that will be filled in by this function.

The
non-

The

values returned in ele are valid only after a successful call to ARKStepEvolve() (i.e., it returned a
negative value).

ele vector, together with the eweight vector from ARKStepGetErrifeights (), can be used to deter-

mine how the various components of the system contributed to the estimated local error test. Specifically,
that error test uses the WRMS norm of a vector whose components are the products of the components of
these two vectors. Thus, for example, if there were recent error test failures, the components causing the
failures are those with largest values for the products, denoted loosely as eweight [i]*ele[i].

int ARKStepGetTimestepperStats (void *arkode_mem, long int *expsteps, long int *accsteps, long int

*step_attempts, long int *nfe_evals, long int *nfi_evals, long int *nlinsetups,
long int *netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

arkode_mem — pointer to the ARKStep memory block.
expsteps — number of stability-limited steps taken in the solver.
accsteps — number of accuracy-limited steps taken in the solver.
step_attempts — number of steps attempted by the solver.
nfe_evals — number of calls to the user’s £ (¢, ) function.
nfi_evals — number of calls to the user’s f(t,y) function.
nlinsetups — number of linear solver setup calls made.

netfails — number of error test failures.

Return value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumConstrFails (void *arkode_mem, long int *nconstrfails)

Returns the cumulative number of constraint test failures (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nconstrfails — number of constraint test failures.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ARKStepSetUserData().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* user_data — memory reference to a user data pointer
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

New in version 5.3.0.

Implicit solver optional output functions

Optional output Function name

No. of calls to linear solver setup function ARKStepGetNumLinSolvSetups ()

No. of nonlinear solver iterations ARKStepGetNumNonlinSolvIters()

No. of nonlinear solver convergence failures ARKStepGetNumNonlinSolvConvFails ()

Single accessor to all nonlinear solver statistics ~ARKStepGetNonlinSolvStats()

int ARKStepGetNumLinSolvSetups (void *arkode_mem, long int *nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nlinsetups — number of linear solver setup calls made.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.
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int ARKStepGetNumNonlinSolvIters (void *arkode_mem, long int *nniters)

Returns the number of nonlinear solver iterations performed (so far).
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nniters — number of nonlinear iterations performed.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvConvFails(void *arkode_mem, long int *nncfails)

Returns the number of nonlinear solver convergence failures that have occurred (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nncfails — number of nonlinear convergence failures.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNonlinSolvStats(void *arkode_mem, long int *nniters, long int *nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nniters — number of nonlinear iterations performed.
* nncfails — number of nonlinear convergence failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Note: This is only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever a
new nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.
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Rootfinding optional output functions

Optional output Function name

Array showing roots found ARKStepGetRootInfo()
No. of calls to user root function ARKStepGetNumGEvals()

int ARKStepGetRootInfo (void *arkode_mem, int *rootsfound)

Returns an array showing which functions were found to have a root.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root (the value
of nrtfn was supplied in the call to ARKStepRootInit()). Fori = 0... nrtfn-1, rootsfound[i] is
nonzero if g; has a root, and 0 if not.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction
of zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int ARKStepGetNumGEvals (void *arkode_mem, long int *ngevals)

Returns the cumulative number of calls made to the user’s root function g.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ngevals — number of calls made to g so far.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Linear solver interface optional output functions

A variety of optional outputs are available from the ARKLS interface, as listed in the following table and elaborated
below. We note that where the name of an output would otherwise conflict with the name of an optional output from
the main solver, a suffix LS (for Linear Solver) or MLS (for Mass Linear Solver) has been added here (e.g. lenrwLS).
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Optional output

Function name

Stored Jacobian of the ODE RHS function

Time at which the Jacobian was evaluated

Step number at which the Jacobian was evaluated
Size of real and integer workspaces

No. of Jacobian evaluations

No. of preconditioner evaluations

No. of preconditioner solves

No. of linear iterations

No. of linear convergence failures

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations

No. of fi calls for finite diff. J or Jov evals.

Last return from a linear solver function

Name of constant associated with a return flag
Size of real and integer mass matrix solver workspaces
No. of mass matrix solver setups (incl. M evals.)
No. of mass matrix multiply setups

No. of mass matrix multiplies

No. of mass matrix solves

No. of mass matrix preconditioner evaluations
No. of mass matrix preconditioner solves

No. of mass matrix linear iterations

No. of mass matrix solver convergence failures
No. of mass-matrix-vector setup evaluations
Last return from a mass matrix solver function

ARKStepGetJac()
ARKStepGetJacTime ()
ARKStepGetJacNumSteps ()
ARKStepGetLinlWorkSpace ()
ARKStepGetNumJacEvals()
ARKStepGetNumPrecEvals()
ARKStepGetNumPrecSolves ()
ARKStepGetNumLinIters()
ARKStepGetNumLinConvFails ()
ARKStepGetNumJTSetupEvals ()
ARKStepGetNumJtimesEvals ()
ARKStepGetNumLinRhsEvals()
ARKStepGetLastLinFlag()
ARKStepGetLinReturnFlagName ()
ARKStepGetMassWorkSpace ()
ARKStepGetNumMassSetups ()
ARKStepGetNumMassMultSetups ()
ARKStepGetNumMassMult ()
ARKStepGetNumMassSolves ()
ARKStepGetNumMassPrecEvals ()
ARKStepGetNumMassPrecSolves ()
ARKStepGetNumMassIters()
ARKStepGetNumMassConvFails ()
ARKStepGetNumMTSetups ()
ARKStepGetLastMassFlag()

int ARKStepGetJac(void *arkode_mem, SUNMatrix *J)

Returns the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side function.

Parameters
» arkode_mem — the ARKStep memory structure
¢ J — the Jacobian matrix

Return values

» ARKLS_SUCCESS - the output value has been successfully set

e ARKLS_MEM_NULL - arkode_mem was NULL
e ARKLS_LMEM_NULL — the linear solver interface

has not been initialized

not be altered.

Warning: This function is provided for debugging purposes and the values in the returned matrix should

int ARKStepGetJacTime (void *arkode_mem, sunrealtype *t_J)

Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side

function was evaluated.
Parameters

» arkode_mem — the ARKStep memory structure
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* t_J — the time at which the Jacobian was evaluated
Return values
* ARKLS_SUCCESS - the output value has been successfully set
e ARKLS_MEM_NULL - arkode_mem was NULL
* ARKLS_LMEM_NULL - the linear solver interface has not been initialized

int ARKStepGetJacNumSteps (void *arkode_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE implicit right-hand side function was evaluated.

Parameters

» arkode_mem — the ARKStep memory structure

* nst_J — the value of the internal step counter at which the Jacobian was evaluated
Return values

» ARKLS_SUCCESS - the output value has been successfully set

e ARKLS_MEM_NULL — arkode_mem was NULL

* ARKLS_LMEM_NULL - the linear solver interface has not been initialized

int ARKStepGetLinWorkSpace (void *arkode_mem, long int *lenrwLS, long int *leniwL.S)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* lenrwLS — the number of realtype values in the ARKLS workspace.

* leniwLS — the number of integer values in the ARKLS workspace.
Return value:

e ARKLS _SUCCESS if successful

e ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumJacEvals (void *arkode_mem, long int *njevals)

Returns the number of Jacobian evaluations.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njevals — number of Jacobian evaluations.
Return value:
e ARKLS _SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
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* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumPrecEvals (void *arkode_mem, long int *npevals)

Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned * jcurPtr = SUNTRUE.

Arguments:
e arkode_mem — pointer to the ARKStep memory block.
* npevals — the current number of calls to psetup.
Return value:
e ARKLS _SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumPrecSolves (void *arkode_mem, long int *npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e npsolves — the number of calls to psolve.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumLinIters (void *arkode_mem, long int *nliters)

Returns the cumulative number of linear iterations.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nliters — the current number of linear iterations.
Return value:
e ARKLS _SUCCESS if successful
¢ ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.
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int ARKStepGetNumLinConvFails (void *arkode_mem, long int *nlcfails)

Returns the cumulative number of linear convergence failures.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nlicfails — the current number of linear convergence failures.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumJTSetupEvals (void *arkode_mem, long int *njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njtsetup — the current number of calls to jtsetup.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNum]timesEvals (void *arkode_mem, long int *njvevals)

Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* njvevals — the current number of calls to jtimes.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumLinRhsEvals (void *arkode_mem, long int *nfevalsLS)

Returns the number of calls to the user-supplied implicit right-hand side function f for finite difference Jacobian
or Jacobian-vector product approximation.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
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* nfevalsLS — the number of calls to the user implicit right-hand side function.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKStep, or when ARKStep is resized.
int ARKStepGetLastLinFlag(void *arkode_mem, long int *Isflag)

Returns the last return value from an ARKLS routine.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* Isflag — the value of the last return flag from an ARKLS function.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then
the value of Isflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
Isflag is negative.

Otherwise, if the ARKLS setup function failed (ARKStepEvolve () returned ARK_LSETUP_FAIL), then
Isflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or SUNLS_PACKAGE_FAIL_-
UNREC.

If the ARKLS solve function failed (ARKStepEvolve () returned ARK_LSOLVE_FAIL), then Isflag con-
tains the error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_-
NULL, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicating that a
matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product approxima-
tion, SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the Jv function; SUNLS_-
PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning, but no
preconditioner solve routine was provided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the precon-
ditioner solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt
procedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was found
to be singular during the QR solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UN-
REC, indicating an unrecoverable failure in an external iterative linear solver package.

char *ARKStepGetLinReturnFlagName (long int Isflag)
Returns the name of the ARKLS constant corresponding to Isflag.

Arguments:

* Isflag — a return flag from an ARKLS function.
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Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 < Isflag < n (LU factorization failed), this routine
returns “NONE”.

int ARKStepGetMassWorkSpace (void *arkode_mem, long int *lenrwMLS, long int *leniwMLS)
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

¢ lenrwMLS — the number of realtype values in the ARKLS mass solver workspace.

* leniwMLS — the number of integer values in the ARKLS mass solver workspace.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumMassSetups (void *arkode_mem, long int *nmsetups)

Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to the
user-supplied mass-matrix constructor function.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmsetups — number of calls to the mass matrix solver setup routine.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassMultSetups (void *arkode_mem, long int *nmvsetups)
Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmvsetups — number of calls to the mass matrix matrix-times-vector setup routine.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL
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Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassMult (void *arkode_mem, long int *nmmults)

Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmmults — number of calls to the mass matrix solver matrix-times-vector routine.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassSolves (void *arkode_mem, long int *nmsolves)

Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e nmsolves — number of calls to the mass matrix solver solve routine.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassPrecEvals(void *arkode_mem, long int *nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nmpevals — the current number of calls to psetup.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.
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int ARKStepGetNumMassPrecSolves (void *arkode_mem, long int *nmpsolves)

Returns the number of calls made to the mass matrix preconditioner solve function, psolve.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmpsolves — the number of calls to psolve.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassIters (void *arkode_mem, long int *nmiters)

Returns the cumulative number of mass matrix solver iterations.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmiters — the current number of mass matrix solver linear iterations.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassConvFails (void *arkode_mem, long int *nmcfails)

Returns the cumulative number of mass matrix solver convergence failures.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmcfails — the current number of mass matrix solver convergence failures.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMTSetups (void *arkode_mem, long int *nmtsetup)

Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
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* nmtsetup — the current number of calls to mtsetup.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetLastMassFlag(void *arkode_mem, long int *mlsflag)

Returns the last return value from an ARKLS mass matrix interface routine.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* misflag — the value of the last return flag from an ARKLS mass matrix solver interface function.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The values of msflag for each of the various solvers will match those described above for the function

ARKStepGetLastLSFlag().

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters or write the current
Butcher table(s). While neither of these would typically be called during the course of solving an initial value problem,
they may be useful for users wishing to better understand ARKStep and/or specific Runge—Kutta methods.

Optional routine Function name

Output all ARKStep solver parameters ARKStepliriteParameters()
Output the current Butcher table(s) ARKStepWriteButcher()

int ARKStepWriteParameters (void *arkode_mem, FILE *fp)
Outputs all ARKStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
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Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

int ARKStepWriteButcher (void *arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* fp — pointer to use for printing the Butcher table(s).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKStep is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

5.2.2.11 ARKStep re-initialization function

To reinitialize the ARKStep module for the solution of a new problem, where a prior call to ARKStepCreate () has been
made, the user must call the function ARKStepReInit (). The new problem must have the same size as the previous
one. This routine retains the current settings for all ARKstep module options and performs the same input checking
and initializations that are done in ARKStepCreate(), but it performs no memory allocation as it assumes that the
existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set zstop value specified
via a call to ARKStepSetStopTime (). Following a successful call to ARKStepReInit (), call ARKStepEvolve()
again for the solution of the new problem.

The use of ARKStepReInit () requires that the number of Runge—Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order g and the problem
type (explicit, implicit, ImEx) are left unchanged.

When using the ARKStep time-stepping module, if there are changes to the linear solver specifications, the user should
make the appropriate calls to either the linear solver objects themselves, or to the ARKLS interface routines, as described
in §5.2.2.3. Otherwise, all solver inputs set previously remain in effect.

One important use of the ARKStepReInit () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to ARKStepReInit(). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.
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int ARKStepReInit (void *arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)

Provides required problem specifications and re-initializes the ARKStep time-stepper module.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* fe — the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side functionin M g = fE(¢,y) + fL(t,y).

* fi — the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M ¢ = fE(t,y) + f1(t,y).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(tg).
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
e ARK_ILL_INPUT if an argument has an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReInit () also sends an error message to the error handler function.

5.2.2.12 ARKStep reset function

To reset the ARKStep module to a particular state (tg,y(tg)) for the continued solution of a problem, where a prior
call to ARKStepCreate () has been made, the user must call the function ARKStepReset (). Like ARKStepReInit ()
this routine retains the current settings for all ARKStep module options and performs no memory allocations but,
unlike ARKStepReInit (), this routine performs only a subset of the input checking and initializations that are done
in ARKStepCreate(). In particular this routine retains all internal counter values and the step size/error history and
does not reinitialize the linear and/or nonlinear solver but it does indicate that a linear solver setup is necessary in the
next step. Like ARKStepReInit (), acall to ARKStepReset () will delete any previously-set tstop value specified via
a call to ARKStepSetStopTime (). Following a successful call to ARKStepReset (), call ARKStepEvolve() again
to continue solving the problem. By default the next call to ARKStepEvolve () will use the step size computed by
ARKStep prior to calling ARKStepReset (). To set a different step size or have ARKStep estimate a new step size use
ARKStepSetInitStep().

One important use of the ARKStepReset () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to ARKStepReset (). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepReset (void *arkode_mem, realtype tR, N_Vector yR)

Resets the current ARKStep time-stepper module state to the provided independent variable value and dependent
variable vector.
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Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* R — the value of the independent variable ¢.
* YR — the value of the dependent variable vector y(tg).
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument has an illegal value.

Notes:
By default the next call to ARKStepEvolve () will use the step size computed by ARKStep prior to calling
ARKStepReset (). To set a different step size or have ARKStep estimate a new step size use ARKStepSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReset () also sends an error message to the error handler function.

5.2.2.13 ARKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKStep integrator may be “resized” be-
tween integration steps, through calls to the ARKStepResize () function. This function modifies ARKStep’s internal
memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics. It is assumed
that the dynamical time scales before and after the vector resize will be comparable, so that all time-stepping heuristics
prior to calling ARKStepResize () remain valid after the call. If instead the dynamics should be recomputed from
scratch, the ARKStep memory structure should be deleted with a call to ARKStepFree (), and recreated with a calls
to ARKStepCreate().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn())isnot supplied (i.e., is set to NULL), then all existing vectors internal to ARKStep will be destroyed
and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input Ascale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale < 0 is specified, the default
of 1.0 will be used.

int ARKStepResize(void *arkode_mem, N_Vector yR, realtype hscale, realtype tR, ARKVecResizeFn resize, void
*resize_data)

Re-sizes ARKStep with a different state vector but with comparable dynamical time scale.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* YR — the newly-sized state vector, holding the current dependent variable values y(tr).
* hscale — the desired time step scaling factor (i.e. the next step will be of size h*hscale).
* R — the current value of the independent variable ¢ (this must be consistent with yR).

* resize — the user-supplied vector resize function (of type ARKVecResizeFn().
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* resize_data — the user-supplied data structure to be passed to resize when modifying internal ARKStep
vectors.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument has an illegal value.

Notes:
If an error occurred, ARKStepResize () also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ARKStepResize () will disable constraint checking.
A call to ARKStepSetConstraints() is required to re-enable constraint checking.

Resizing the linear solver:
When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures
must also be resized. At present, none of these include a solver-specific “resize” function, so the linear solver
memory must be destroyed and re-allocated following each call to ARKStepResize (). Moreover, the ex-
isting ARKLS interface should then be deleted and recreated by attaching the updated SUNLinearSolver
(and possibly SUNMatrix) object(s) through calls to ARKStepSetLinearSolver(), and ARKStepSet-
MassLinearSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-
vector product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must
be called again following the solver re-specification.

Resizing the absolute tolerance array:
If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to ARK-
StepResize(), so the new absolute tolerance vector should be re-set following each call to ARKStepRe-
size() through a new call to ARKStepSVtolerances () and possibly ARKStepResVtolerance() if ap-
plicable.

If scalar-valued tolerances or a tolerance function was specified through either ARKStepSStolerances()
or ARKSteplWFtolerances (), then these will remain valid and no further action is necessary.

Example codes:

e examples/arkode/C_serial/ark_heat1D_adapt.c

5.2.2.14 Interfacing with MRIStep
When using ARKStep as the inner (fast) integrator with MRIStep, the utility function ARKStepCreateMRIStepIn-
nerStepper () should be used to wrap an ARKStep memory block as an MRIStepInnerStepper.

int ARKStepCreateMRIStepInnerStepper (void *inner_arkode_mem, MRIStepInnerStepper *stepper)
Wraps an ARKStep memory block as an MRIStepInnerStepper for use with MRIStep.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* stepper —the MRIStepInnerStepper object.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_FAIL if a memory allocation failed
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* ARK_ILL_INPUT if an argument has an illegal value.

Example usage:

/% fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

/* MRIStepInnerStepper to wrap the inner (fast) ARKStep object */
MRIStepInnerStepper stepper = NULL;

/* create an ARKStep object, setting fast (inner) right-hand side
functions and the initial condition */

inner_arkode_mem = ARKStepCreate(ffe, ffi, t0, y®, sunctx);

/* setup ARKStep */

/% create MRIStepInnerStepper wrapper for the ARKStep memory block */

flag = ARKStepCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);

/* create an MRIStep object, setting the slow (outer) right-hand side
functions and the initial condition */

outer_arkode_mem = MRIStepCreate(fse, fsi, t0®, y0®, stepper, sunctx)

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

5.2.3 Relaxation Methods

This section describes user-callable functions for applying relaxation methods with ARKStep. For more information
on relaxation Runge—Kutta methods see §2.14.

Note: Relaxation support as not been evaluated with non-identity mass matrices. While this usage mode is supported,
feedback from users who explore this combination would be appreciated.

5.2.3.1 Enabling or Disabling Relaxation

int ARKStepSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)
Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

With DIRK and IMEX-ARK methods or when a fixed mass matrix is present, applying relaxation requires allo-
cating s additional state vectors (where s is the number of stages in the method).

Parameters
» arkode_mem — the ARKStep memory structure
* rfn - the user-defined function to compute the relaxation function &(y)

* rjac - the user-defined function to compute the relaxation Jacobian &'(y)
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Return values
* ARK_SUCCESS — the function exited successfully
e ARK_MEM_NULL - arkode_mem was NULL

e ARK_ILL_INPUT - an invalid input combination was provided (see the output error message
for more details)

* ARK_MEM_FAIL — a memory allocation failed

Warning: Applying relaxation requires using a method of at least second order with b* > 0 and b/ > 0. If
these conditions are not satisfied, ARKStepEvolve () will return with an error during initialization.

Note: When combined with fixed time step sizes, ARKStep will attempt each step using the specified step size.
If the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If the
step fails or applying relaxation fails, ARKStepEvolve () will return with an error.

New in version 5.6.0.

5.2.3.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ARKStepSetRelaxEtaFail (void *arkode_mem, sunrealtype eta_rf)
Sets the step size reduction factor applied after a failed relaxation application.

The default value is 0.25. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
» eta_rf — the step size reduction factor
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepSetRelaxLowerBound (void *arkode_mem, sunrealtype lower)

Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 0.8. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
* lower - the relaxation parameter lower bound

Return values
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* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL

New in version 5.6.0.

int ARKStepSetRelaxUpperBound (void *arkode_mem, sunrealtype upper)

Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 1.2. Input values < 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
* upper — the relaxation parameter upper bound
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL

New in version 5.6.0.

int ARKStepSetRelaxMaxFails (void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
* max_fails — the maximum number of failed relaxation applications allowed in a step
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL

New in version 5.6.0.

int ARKStepSetRelaxMaxIters (void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ARKStepSe-
tRelaxResTol () and ARKStepSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ARKStepSetRelaxEtaFail()).

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure

e max_iters — the maximum number of solver iterations allowed
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Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepSetRelaxSolver (void *arkode_mem, ARKRelaxSolver solver)
Sets the nonlinear solver method used to compute the relaxation parameter.

The default value is ARK_RELAX_NEWTON.
Parameters
» arkode_mem — the ARKStep memory structure
* solver — the nonlinear solver to use: ARK_RELAX_BRENT or ARK_RELAX_NEWTON
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
e ARK_ILL_INPUT - an invalid solver option was provided
New in version 5.6.0.

int ARKStepSetRelaxResTol (void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.46).

If the residual or iteration update tolerance (see ARKStepSetRelaxMaxIter()) is not reached within the max-
imum number of iterations (determined by ARKStepSetRelaxMaxIters()), the step will be repeated with a
smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 4e where € is floating-point precision. Input values < 0 will result in the default value being
used.

Parameters
» arkode_mem — the ARKStep memory structure
» res_tol - the nonlinear solver residual tolerance to use
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepSetRelaxTol (void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)
Sets the nonlinear solver relative and absolute tolerance on changes in r iterates when solving (2.46).
If the residual (see ARKStepSetRelaxResTol ()) or iterate update tolerance is not reached within the maximum

number of iterations (determined by ARKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ARKStepSetRelaxEtaFail()).

The default relative and absolute tolerances are 4¢ and 10~ 14, respectively, where e is floating-point precision.
Input values < 0 will result in the default value being used.
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Parameters
» arkode_mem — the ARKStep memory structure
» rel_tol - the nonlinear solver relative solution tolerance to use
* abs_tol - the nonlinear solver absolute solution tolerance to use
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL

New in version 5.6.0.

5.2.3.3 Optional Output Functions
This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ARKStepGetNumRelaxFnEvals (void *arkode_mem, long int *r_evals)

Get the number of times the user’s relaxation function was evaluated.
Parameters
» arkode_mem — the ARKStep memory structure
» r_evals — the number of relaxation function evaluations
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepGetNumRelaxJacEvals (void *arkode_mem, long int *J_evals)

Get the number of times the user’s relaxation Jacobian was evaluated.
Parameters
» arkode_mem — the ARKStep memory structure
* J_evals — the number of relaxation Jacobian evaluations
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepGetNumRelaxFails (void *arkode_mem, long int *fails)
Get the total number of times applying relaxation failed.
The counter includes the sum of the number of nonlinear solver failures (see ARKStepGetNumRelaxSolve-

Fails()) and the number of failures due an unacceptable relaxation value (see ARKStepSetRelaxBoundFac-

tor()).
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Parameters
» arkode_mem — the ARKStep memory structure
» fails - the total number of failed relaxation attempts
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepGetNumRelaxBoundFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter was deemed unacceptable.
Parameters
» arkode_mem — the ARKStep memory structure
» fails - the number of failures due to an unacceptable relaxation parameter value
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepGetNumRelaxSolveFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter nonlinear solver failed.
Parameters
» arkode_mem — the ARKStep memory structure
» fails - the number of relaxation nonlinear solver failures
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ARKStepGetNumRelaxSolveIters(void *arkode_mem, long int *iters)

Get the number of relaxation parameter nonlinear solver iterations.

Parameters
» arkode_mem — the ARKStep memory structure
* iters — the number of relaxation nonlinear solver iterations

Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
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New in version 5.6.0.

5.2.4 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKODE
provides two internal preconditioner modules that may be used by ARKStep: a banded preconditioner for serial and
threaded problems (ARKBANDPRE) and a band-block-diagonal preconditioner for parallel problems (ARKBBDPRE).

5.2.4.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules in a serial or
threaded setting. It requires that the problem be set up using either the NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS module, due to data access patterns. It also currently requires that the problem involve an
identity mass matrix, i.e., M = I.

This module uses difference quotients of the ODE right-hand side function f! to generate a band matrix of bandwidth
ml + mu + 1, where the number of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (m1, the lower

half-bandwidth) are specified by the user. This band matrix is used to to form a preconditioner the Krylov linear solver.
T

Although this matrix is intended to approximate the Jacobian J = D0 it may be a very crude approximation, since
Y

the true Jacobian may not be banded, or its true bandwidth may be larger thanml + mu + 1. However, as long as the

banded approximation generated for the preconditioner is sufficiently accurate, it may speed convergence of the Krylov

iteration.

ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the header
files required for the integration of the ODE problem (see §5.1), to use the ARKBANDPRE module, the user’s program
must include the header file arkode_bandpre.h which declares the needed function prototypes. The following is a
summary of the usage of this module. Steps that are unchanged from the skeleton program presented in §5.2.1 are
italicized.

1. Initialize multi-threaded environment (if appropriate)
Set problem dimensions

Set vector of initial values

Create ARKStep object

Specify integration tolerances

S U T

Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

7. Set linear solver optional inputs

8. Attach linear solver module

9. Initialize the ARKBANDPRE preconditioner module
Specify the upper and lower half-bandwidths (mu and m1, respectively) and call
ier = ARKBandPrecInit(arkode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.
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10. Set optional inputs

Note that the user should not call ARKStepSetPreconditioner() as it will overwrite the preconditioner setup
and solve functions.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs
14. Specify rootfinding problem

15. Advance solution in time

16. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace () and ARKBandPrecGetNumRhsEvals().

17. Deallocate memory for solution vector
18. Free solver memory

19. Free linear solver memory

ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit (void *arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* N —problem dimension (size of ODE system).

* mu — upper half-bandwidth of the Jacobian approximation.

» ml — lower half-bandwidth of the Jacobian approximation.
Return value:

* ARKLS_SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

ARKLS_LMEM_NULL if the linear solver memory is NULL

ARKLS_ILL_INPUT if an input has an illegal value

ARKLS_MEM_FAIL if a memory allocation request failed

Notes:
The banded approximate Jacobian will have nonzero elements only in locations (7, j) with ml < j — ¢ <
mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace (void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Arguments:
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* arkode_mem — pointer to the ARKStep memory block.

¢ lenrwLS — the number of realtype values in the ARKBANDPRE workspace.

* leniwLS — the number of integer values in the ARKBANDPRE workspace.
Return value:

¢ ARKLS_SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

e ARKLS_LMEM_NULL if the linear solver memory is NULL

* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the ARK-
BANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and temporary
vectors).

The workspaces referred to here exist in addition to those given by the corresponding function ARK-
StepGetLSWorkspace().

int ARKBandPrecGetNumRhsEvals (void *arkode_mem, long int *nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function f! for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nfevalsBP — number of calls to f7.
Return value:
e ARKLS_SUCCESS if no errors occurred
* ARKLS_MEM_NULL if the ARKStep memory is NULL
* ARKLS_LMEM_NULL if the linear solver memory is NULL
* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes:
The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function ARK-
StepGetNumLSRhsEvals() and also from nfi_evals returned by ARKStepGetNumRhsEvals (). The total
number of right-hand side function evaluations is the sum of all three of these counters, plus the nfe_evals
counter for f E calls returned by ARKStepGetNumRhsEvals().

5.2.4.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKODE) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse
and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the PDE
mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It has
been successfully used with CVODE for several realistic, large-scale problems [50]. It is included in a software module
within the ARKODE package, and is accessible within the ARKStep time stepping module. This preconditioning
module works with the parallel vector module NVECTOR_PARALLEL and is usable with any of the Krylov iterative
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linear solvers through the ARKLS interface. It generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals and these numbers
may vary from block to block. This Band-Block-Diagonal Preconditioner module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into () non-
overlapping subdomains, where each subdomain is assigned to one of the () MPI tasks used to solve the ODE system.
The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a (possibly cheaper)
approximate right-hand side function for construction of this preconditioning matrix. This requires the definition of a
new function g(t,y) ~ fI(¢,y) that will be used to construct the BBD preconditioner matrix. At present, we assume
that the ODE be written in explicit form as

g=rEty) + f(ty),

where f! corresponds to the ODE components to be treated implicitly, i.e. this preconditioning module does not
support problems with non-identity mass matrices. The user may set g = f, if no less expensive approximation is
desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector y into @ disjoint blocks
Yq¢» and a decomposition of g into blocks g,. The block g, depends both on 7, and on components of blocks ¥,
associated with neighboring subdomains (so-called ghost-cell data). If we let , denote y, augmented with those other
components on which g, depends, then we have

g(ta y) = [gl(tag1)792(t7y2)a o 7gQ(t7yQ)]T )

and each of the blocks g, (¢, ) is decoupled from one another.

The preconditioner associated with this decomposition has the form

Py
P
P =
o
where
Py~1—+J,
0
and where J, is a difference quotient approximation to a—‘?q. This matrix is taken to be banded, with upper and lower
Y

half-bandwidths mudq and mldq defined as the number 0% non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudg + mldg + 2 evaluations of g, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px=10
reduces to solving each of the distinct equations
Pyxg=1bq, q=1,...,0Q,

and this is done by banded LU factorization of P, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks F,. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.
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ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct P: a required function gloc (of type ARK-
LocalFn()) which approximates the right-hand side function g(¢,y) ~ f!(t,y) and which is computed locally, and
an optional function cfn (of type ARKCommFn ()) which performs all inter-process communication necessary to eval-
uate the approximate right-hand side g. These are in addition to the user-supplied right-hand side function f’. Both
functions take as input the same pointer user_data that is passed by the user to ARKStepSetUserData() and that
was passed to the user’s function f7. The user is responsible for providing space (presumably within user_data) for
components of y that are communicated between processes by cfn1, and that are then used by gloc, which should not do
any communication.

typedef int (*ARKLocalFn)(sunindextype Nlocal, realtype t, N_Vector y, N_Vector glocal, void *user_data)

This gloc function computes g(t, y). It fills the vector glocal as a function of ¢ and y.
Arguments:

* Nlocal — the local vector length.

¢ t —the value of the independent variable.

 y —the value of the dependent variable vector on this process.

* glocal — the output vector of ¢(t, y) on this process.

* user_data — a pointer to user data, the same as the user_data parameter passed to ARKStepSetUser-
Data().

Return value:
An ARKLocalFn should return 0 if successful, a positive value if a recoverable error occurred (in which
case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARKStepEvolve () will return ARK_LSETUP_FAIL).

Notes:
This function should assume that all inter-process communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where ¢ is mathematically identical to f7 is allowed.

typedef int (*ARKCommFn)(sunindextype Nlocal, realtype t, N_Vector y, void *user_data)

This cfn function performs all inter-process communication necessary for the execution of the gloc function
above, using the input vector y.

Arguments:
* Nlocal — the local vector length.
¢ t —the value of the independent variable.
 y — the value of the dependent variable vector on this process.

* user_data — a pointer to user data, the same as the user_data parameter passed to ARKStepSetUser-
Data().

Return value:
An ARKCommFn should return O if successful, a positive value if a recoverable error occurred (in which
case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARKStepEvolve () will return ARK_LSETUP_FAIL).

Notes:
The cfn function is expected to save communicated data in space defined within the data structure user_data.

Each call to the ¢fn function is preceded by a call to the right-hand side function f! with the same (¢, )
arguments. Thus, cfn can omit any communication done by f7 if relevant to the evaluation of glocal. If all
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necessary communication was done in f, then cfin = NULL can be passed in the call to ARKBBDPrecInit ()
(see below).

ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see §5.1), to use the ARKBBDPRE
module, the user’s program must include the header file arkode_bbdpre.h which declares the needed function pro-
totypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in §5.2.1 are italicized.

1.

10.

11.
12.
13.
14.
15.
16.

17.

Initialize MPI

. Set problem dimensions
. Set vector of initial values

2
3
4.
5
6

Create ARKStep object

. Specify integration tolerances

. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

Set linear solver optional inputs
Attach linear solver module
Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudq and mldq, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit(arkode_mem, Nlocal, mudq, mldg, mukeep, mlkeep, dqrely, gloc,
cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of ARKBBD-
PrecInit() are the two user-supplied functions of type ARKLocalFn() and ARKCommFn() described above,
respectively.

Set optional inputs

Note that the user should not call ARKStepSetPreconditioner() as it will overwrite the preconditioner setup
and solve functions.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Specify rootfinding problem
Advance solution in time

Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines ARKBBDPrecGet -
WorkSpace () and ARKBBDPrecGetNumGfnEvals ().

Deallocate memory for solution vector
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18. Free solver memory

19. Free linear solver memory

20. Finalize MPI

ARKBBDPRE user-callable functions

The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit (void *arkode_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq,

sunindextype mukeep, sunindextype mlkeep, realtype dqrely, ARKLocalFn gloc, ARKCommFn
cfn)

Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Arguments:

arkode_mem — pointer to the ARKStep memory block.

Nlocal —local vector length.

mudgq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
mldg — lower half-bandwidth to be used in the difference quotient Jacobian approximation.
mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.
mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

dgrely — the relative increment in components of y used in the difference quotient approximations. The
default is dgrely = v/unit roundoff, which can be specified by passing dgrely = 0.0.

gloc — the name of the C function (of type ARKLocalFn()) which computes the approximation
g(t.y) = f1(ty).

cfn — the name of the C function (of type ARKCommFn ()) which performs all inter-process communi-
cation required for the computation of g(t, y).

Return value:

Notes:

ARKLS SUCCESS if no errors occurred

ARKLS _MEM_NULL if the ARKStep memory is NULL
ARKLS_LMEM_NULL if the linear solver memory is NULL
ARKLS_ILL_INPUT if an input has an illegal value
ARKLS_MEM_FAIL if a memory allocation request failed

If one of the half-bandwidths mudq or mldg to be used in the difference quotient calculation of the approx-
imate Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldg need not be the true half-bandwidths of the Jacobian of the local block
of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller than mudg and mldgq, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.
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The ARKBBDPRE module also provides a re-initialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solv-
ing one problem, and after calling ARKStepReInit () to re-initialize ARKStep for a subsequent problem, a call to
ARKBBDPrecReInit () can be made to change any of the following: the half-bandwidths mudq and mldq used in the
difference-quotient Jacobian approximations, the relative increment dgrely, or one of the user-supplied functions gloc
and cfn. If there is a change in any of the linear solver inputs, an additional call to the “Set” routines provided by the
SUNLINSOL module, and/or one or more of the corresponding ARKStepSet*** functions, must also be made (in the
proper order).

int ARKBBDPrecReInit (void *arkode_mem, sunindextype mudq, sunindextype mldq, realtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mudgq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldg — lower half-bandwidth to be used in the difference quotient Jacobian approximation.

* dgrely — the relative increment in components of y used in the difference quotient approximations. The
default is dgrely = +/unit roundoff, which can be specified by passing dgrely = 0.0.

Return value:
e ARKLS_SUCCESS if no errors occurred
* ARKLS_MEM_NULL if the ARKStep memory is NULL
* ARKLS_LMEM_NULL if the linear solver memory is NULL
* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes:
If one of the half-bandwidths mudgq or mldq is negative or exceeds the value Nlocal-1, it is replaced by 0 or
Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace (void *arkode_mem, long int *lenrwBBDP, long int *leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

¢ lenrwBBDP — the number of realtype values in the ARKBBDPRE workspace.

¢ leniwBBDP — the number of integer values in the ARKBBDPRE workspace.
Return value:

e ARKLS_SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

* ARKLS_LMEM_NULL if the linear solver memory is NULL

* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.
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The workspaces referred to here exist in addition to those given by the corresponding function ARK-
StepGetLSWorkSpace().

int ARKBBDPrecGetNumGfnEvals (void *arkode_mem, long int *ngevalsBBDP)

Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ngevalsBBDP — the number of calls made to the user-supplied gloc function.
Return value:

e ARKLS_SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

* ARKLS_LMEM_NULL if the linear solver memory is NULL

* ARKLS_PMEM_NULL if the preconditioner memory is NULL

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKStep output and npsolves and nfevalsLS are linear solver optional
outputs (see the table §5.2.2.10).

5.2.5 Multigrid Reduction in Time with XBraid

The prior sections discuss using ARKStep in a traditional sequential time integration setting i.e., the solution is ad-
vanced from one time to the next where all parallelism resides within the evaluation of a step e.g., the computation
of the right-hand side, (non)linear solves, vector operations etc. For example, when discretizing a partial differential
equation using a method of lines approach the spatially-discretized equations comprise a large set of ordinary differen-
tial equations that can be evolved with ARKStep. In this case the parallelization lies in decomposing the spatial domain
unknowns across distributed computational nodes. Considering the strong scaling case at a given spatial resolution, as
the problem is spread across greater numbers of computational nodes scalability in the spatial dimension is exhausted
and sequential time integration becomes a bottleneck. This bottleneck is largely driven by the hardware shift from
faster clock speeds to greater concurrency to achieve performance gains. In this case, at the spatial scaling limit and
with stagnant clock speeds, more time steps will lead to an increased runtime.

An alternative approach to sequential time integration is to solve for all time values simultaneously. One such approach
is multigrid reduction in time [36] (MGRIT) which uses a highly parallel iterative method to expose parallelism in the
time domain in addition to the spatial parallelization. Starting with an initial temporal grid the multilevel algorithm
constructs successively coarser time grids and uses each coarse grid solution to improve the solution at the next finer
scale. In the two level case the MGRIT algorithm is as follows:

1. Relax the solution on the fine grid (parallel-in-time)
2. Restrict the solution to the fine grid (time re-discretization).
3. Solve the residual equation on the coarse grid (serial-in-time).
4. Correct the fine grid solution (parallel-in-time).
Applying this algorithm recursively for the solve step above leads to the multilevel algorithm.

The XBraid library [1] implements the MGRIT algorithm in a non-intrusive manner, enabling the reuse of existing
software for sequential time integration. The following sections describe the ARKStep + XBraid interface and the
steps necessary to modify an existing code that already uses ARKStep to also use XBraid.
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5.2.5.1 SUNBraid Interface

Interfacing ARKStep with XBraid requires defining two data structures. The first is the XBraid application data struc-
ture that contains the data necessary for carrying out a time step and is passed to every interface function (much like
the user data pointer in SUNDIALS packages). For this structure the SUNBraid interface defines the generic SUN-
BraidApp structure described below that serves as the basis for creating integrator-specific or user-defined interfaces
to XBraid. The second structure holds the problem state data at a certain time value. This structure is defined by the
SUNBraidVector structure and simply contains an N_Vector. In addition to the two data structures several functions
defined by the XBraid API are required. These functions include vector operations (e.g., computing vector sums or
norms) as well as functions to initialize the problem state, access the current solution, and take a time step.

The ARKBraid interface, built on the SUNBraidApp and SUNBraidVector structures, provides all the functionaly
needed combine ARKStep and XBraid for parallel-in-time integration. As such, only a minimal number of changes
are necessary to update an exsting code that uses ARKStep to also use XBraid.

SUNBraidApp

As mentioned above the SUNBraid interface defines the SUNBraidApp structure to hold the data necessary to compute
atime step. This structure, like other SUNDIALS generic objects, is defined as a structure consisting of an implementa-
tion specific content field and an operations structure comprised of a set of function pointers for implmentation-defined
operations on the object. Specifically the SUNBraidApp type is defined as

/* Define XBraid App structure */
struct _braid_App_struct
{
void *content;
SUNBraidOps ops;
};

/% Pointer to the interface object (same as braid_App) */
typedef struct _braid_App_struct *SUNBraidApp;

Here, the SUNBraidOps structure is defined as

/% Structure containing function pointers to operations */
struct _SUNBraidOps
{
int (*getvectmpl) (braid_App app, N_Vector *tmpl);
};

/* Pointer to operations structure */
typedef struct _SUNBraidOps *SUNBraidOps;

The generic SUNBraidApp defines and implements the generic operations acting on a SUNBraidApp obejct. These
generic functions are nothing but wrappers to access the specific implementation through the object’s operations struc-
ture. To illustrate this point we show below the implementation of the SUNBraidApp_GetVecTmpl () function:

/* Get a template vector from the integrator */

int SUNBraidApp_GetVecTmpl (braid_App app, N_Vector *y)

{
if (app->ops->getvectmpl == NULL) return SUNBRAID_OPNULL;
return app->ops->getvectmpl(app, V);

}

5.2. Using the ARKStep time-stepping module 175



User Documentation for ARKODE, v5.6.0

The SUNBraidApp operations are define below in §5.2.5.1.

SUNBraidOps

In this section we define the SUNBraidApp operations and, for each operation, we give the function signature, a de-
scription of the expected behavior, and an example usage of the function.

int SUNBraidApp_GetVecTmpl (braid_App app, N_Vector *y)
This function returns a vector to use as a template for creating new vectors with N_VCIlone ().

Arguments:
* app — input, a SUNBraidApp instance (XBraid app structure).
* y — output, the template vector.

Return value:
If this function is not implemented by the SUNBraid App implementation (i.e., the function pointer is NULL)
then this function will return SUNBRAID_OPNULL. Otherwise the return value depends on the particular
SUNBraidApp implementation. Users are encouraged to utilize the return codes defined in sundials/
sundials_xbraid.h and listed in Table 5.2.

Usage:

/* Get template vector */
flag = SUNBraidApp_GetVecTmpl (app, y_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

SUNBraidApp Utility Functions

In addition to the generic SUNBraid App operations the following utility functions are provided to assist in creating and
destroying a SUNBraidApp instance.

int SUNBraidApp_NewEmpty (braid_App *app)

This function creates a new SUNBraidApp instance with the content and operations initialized to NULL.
Arguments:
* app — output, an empty SUNBraidApp instance (XBraid app structure).
Return value:
e SUNBRAID_SUCCESS if successful.
* SUNBRAID_ALLOCFAIL if a memory allocation failed.
Usage:

/* Create empty XBraid interface object */
flag = SUNBraidApp_NewEmpty(app_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

int SUNBraidApp_FreeEmpty (braid_App *app)
This function destroys an empty SUNBraidApp instance.

Arguments:

* app — input, an empty SUNBraidApp instance (XBraid app structure).
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Return value:
e SUNBRAID_SUCCESS if successful.
Usage:

/* Free empty XBraid interface object */
flag = SUNBraidApp_FreeEmpty(app_ptr);

Warning: This function does not free the SUNBraidApp object’s content structure. An implementation
should free its content before calling SUNBraidApp_FreeEmpty () to deallocate the base SUNBraidApp
structure.

SUNBraidVector

As mentioned above the SUNBraid interface defines the SUNBraid Vector structure to store a snapshot of solution data
at a single point in time and this structure simply contains an N_Vector. Specifically, the structure is defined as follows:

struct _braid_Vector_struct

{
N_Vector y;

};

/% Poiner to vector wrapper (same as braid _Vector) */
typedef struct _braid_Vector_struct *SUNBraidVector;
To assist in creating creating and destroying this structure the following utility functions are provided.

int SUNBraidVector_New(N_Vecror y, SUNBraid Vector *u)
This function creates a new SUNBraidVector wrapping the N_Vector y.

Arguments:

e y —input, the N_Vector to wrap.

* yu — output, the SUNBraid Vector wrapping y.
Return value:

* SUNBRAID_SUCCESS if successful.

e SUNBRAID_ILLINPUT if y is NULL.

e SUNBRAID_ALLOCFAIL if a memory allocation fails.
Usage:

/* Create new vector wrapper */
flag = SUNBraidVector_New(y, u_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

Warning: The SUNBraidVector takes ownership of the wrapped N_Vector and as such the wrapped N_-
Vector is destroyed when the SUNBraid Vector is freed with SUNBraidVector_Free().
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int SUNBraidVector_GetNVector (SUNBraidVector u, N_Vector *y)
This function retrieves the wrapped N_Vector from the SUNBraidVector.

Arguments:
* u —input, the SUNBraid Vector wrapping y.
* y —output, the wrapped N_Vector.
Return value:
* SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if u is NULL.
e SUNBRAID_MEMFAIL if y is NULL.
Usage:

/* Create new vector wrapper */
flag = SUNBraidVector_GetNVector(u, y_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

Finally, the SUNBraid interface defines the following vector operations acting on SUNBraidVectors, that consist of
thin wrappers to compatible SUNDIALS N_Vector operations.
int SUNBraidVector_Clone (braid_App app, braid_Vector u, braid_Vector *v_ptr)

This function creates a clone of the input SUNBraidVector and copies the values of the input vector u into the
output vector v_ptr using N_VClone () and N_VScale().

Arguments:
* app —input, a SUNBraidApp instance (XBraid app structure).
* u — input, the SUNBraidVector to clone.
e v_ptr — output, the new SUNBraidVector.
Return value:
e SUNBRAID_SUCCESS if successful.
* SUNBRAID_ILLINPUT if u is NULL.
* SUNBRAID_MEMFAIL if the N_Vector y wrapped by « is NULL.
* SUNBRAID_ALLOCFAIL if a memory allocation fails.

int SUNBraidVector_Free (braid_App app, braid_Vector u)
This function destroys the SUNBraidVector and the wrapped N_Vector using N_VDestroy ().

Arguments:
* app — input, a SUNBraidApp instance (XBraid app structure).
* u — input, the SUNBraidVector to destroy.
Return value:
e SUNBRAID_SUCCESS if successful.
int SUNBraidVector_Sum(braid_App app, braid_Real alpha, braid_Vector X, braid_Real beta, braid_Vector y)

This function computes the vector sum ax + Sy — y using N_VLinearSum().
Arguments:

* app —input, a SUNBraidApp instance (XBraid app structure).
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* alpha — input, the constant a.
e x — input, the vector .
¢ beta — input, the constant 3.
* y — input/output, the vector y.
Return value:
* SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if x or y is NULL.
* SUNBRAID_MEMFAIL if either of the wrapped N_Vectors are NULL.

int SUNBraidVector_SpatialNorm(braid_App app, braid_Vector u, braid_Real *norm_ptr)
This function computes the 2-norm of the vector u using N_VDotProd().

Arguments:
* app —input, a SUNBraidApp instance (XBraid app structure).
* u — input, the vector u.
* norm_ptr — output, the L2 norm of u.
Return value:
e SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if u is NULL.
* SUNBRAID_MEMFAIL if the wrapped N_Vector is NULL.

int SUNBraidVector_BufSize (braid_App app, braid_Int *size_ptr, braid_BufferStatus bstatus)

This function returns the buffer size for messages to exchange vector data using SUNBraidApp_GetVecTmpl ()
and N_VBufSize().

Arguments:

* app — input, a SUNBraidApp instance (XBraid app structure).

* size_ptr — output, the buffer size.

* bstatus — input, a status object to query for information on the message type.
Return value:

* SUNBRAID_SUCCESS if successful.

* An error flag from SUNBraidApp_GetVecTmpl () or N_VBufSize().

int SUNBraidVector_BufPack (braid_App app, braid_Vector u, void *buffer, braid_BufferStatus bstatus)
This function packs the message buffer for exchanging vector data using N_VBufPack ().

Arguments:

* app — input, a SUNBraidApp instance (XBraid app structure).

* u — input, the vector to pack into the exchange buffer.

* buffer — output, the packed exchange buffer to pack.

* bstatus — input, a status object to query for information on the message type.
Return value:

e SUNBRAID_SUCCESS if successful.
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* SUNBRAID_ILLINPUT if u is NULL.
* An error flag from N_VBufPack().

int SUNBraidVector_BufUnpack (braid_App app, void *buffer, braid_Vector *u_ptr, braid_BufferStatus bstatus)

This function unpacks the message buffer and creates a new N_Vector and SUNBraidVector with the buffer data
using N_VBufUnpack (), SUNBraidApp_GetVecTmpl (), and N_VCIlone().

Arguments:

* app — input, a SUNBraidApp instance (XBraid app structure).

* buffer — input, the exchange buffer to unpack.

* u_ptr — output, a new SUNBraidVector containing the buffer data.

* bstatus — input, a status object to query for information on the message type.
Return value:

* SUNBRAID_SUCCESS if successful.

* SUNBRAID_ILLINPUT fif buffer is NULL.

* SUNBRAID_ALLOCFAIL if a memory allocation fails.

* An error flag from SUNBraidApp_GetVecTmpl () and N_VBufUnpack().

SUNBraid Return Codes

The SUNBraid interface return values are given in Table 5.2.

Table 5.2: SUNBraid Return Codes

Return value name Value Meaning

SUNBRAID_SUCCESS 0 The call/operation was successful.
SUNBRAID_ALLOCFAIL —1 A memory allocation failed.
SUNBRAID_MEMFAIL =2 A memory access fail.
SUNBRAID_OPNULL -3 The SUNBraid operation is NULL.
SUNBRAID_ILLINPUT —4 An invalid input was provided.
SUNBRAID_BRAIDFAIL —5 An XBraid function failed.
SUNBRAID_SUNFAIL —6 A SUNDIALS function failed.

5.2.5.2 ARKBraid Interface

This section describes the ARKBraid implementation of a SUNBraidApp for using the ARKStep integration module
with XBraid. The following section §5.2.5.2 describes routines for creating, initializing, and destroying the ARKStep
+ XBraid interface, routines for setting optional inputs, and routines for retrieving data from an ARKBraid instance.
As noted above, interfacing with XBraid requires providing functions to initialize the problem state, access the current
solution, and take a time step. The default ARKBraid functions for each of these actions are defined in §5.2.5.2 and
may be overridden by user-defined if desired. A skeleton of the user’s main or calling program for using the ARKBraid
interface is given in §5.2.5.3. Finally, for advanced users that wish to create their own SUNBraidApp implementation
using ARKStep, §5.2.5.4 describes some helpful functions available to the user.
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ARKBraid Initialization and Deallocation Functions

This section describes the functions that are called by the user to create, initialize, and destroy an ARKBraid instance.
Each user-callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error
occurred. The possible return codes are given in Table 5.2.

int ARKBraid_Create (void *arkode_mem, braid_App *app)

This function creates a SUNBraid App object, sets the content pointer to the private ARKBraid interface structure,
and attaches the necessary SUNBraidOps implementations.

Arguments:
* arkode_mem — input, a pointer to an ARKStep memory structure.
* app — output, an ARKBraid instance (XBraid app structure).
Return value:
e SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT arkode_mem is NULL.
e SUNBRAID_ALLOCFAIL if a memory allocation failed.

Warning: The ARKBraid interface is ARKStep-specific. Although one could eventually construct an
XBraid interface to either ERKStep or MRIStep, those are not supported by this implementation.

int ARKBraid_BraidInit(MPI_Comm comm_w, MPI_Comm comm_t, realtype tstart, realtype tstop, sunindextype
ntime, braid_App app, braid_Core *core)

This function wraps the XBraid braid_Init() function to create the XBraid core memory structure and ini-
tializes XBraid with the ARKBraid and SUNBraidVector interface functions.

Arguments:
* comm_w — input, the global MPI communicator for space and time.
e comm_t — input, the MPI communicator for the time dimension.
* tstart — input, the initial time value.
* tstop — input, the final time value.
* ntime — input, the initial number of grid points in time.
* app — input, an ARKBraid instance.
* core — output, the XBraid core memory structure.
Return value:
e SUNBRAID_SUCCESS if successful.

e SUNBRAID_ILLINPUT if either MPI communicator is MPI_COMM_NULL, if ntime < 2, or if app or its
content is NULL.

e SUNBRAID_BRAIDFAIL if the braid_Init () call fails. The XBraid return value can be retrieved
with ARKBraid_GetLastBraidFlag().

Note: If desired, the default functions for vector initialization, accessing the solution, taking a time step, and
computing the spatial norm should be overridden before calling this function. See §5.2.5.2 for more details.
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Warning: The user is responsible for deallocating the XBraid core memory structure with the XBraid
function braid_Destroy().

int ARKBraid_Free (braid_App *app)

This function deallocates an ARKBraid instance.
Arguments:

* app — input, a pointer to an ARKBraid instance.
Return value:

e SUNBRAID_SUCCESS if successful.
ARKBraid Set Functions

This section describes the functions that are called by the user to set optional inputs to control the behavior of an
ARKBraid instance or to provide alternative XBraid interface functions. Each user-callable function returns SUN-

BRATID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred. The possible return codes are
given in Table 5.2.

int ARKBraid_SetStepFn(braid_App app, braid_PtFcnStep step)
This function sets the step function provided to XBraid (default ARKBraid_Step()).
Arguments:

* app — input, an ARKBraid instance.

* step — input, an XBraid step function. If step is NULL, the default function will be used.

Return value:
* SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
e SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetInitFn(braid_App app, braid_PtFcnlnit init)
This function sets the vector initialization function provided to XBraid (default ARKBraid_Init()).
Arguments:

* app — input, an ARKBraid instance.

* init — input, an XBraid vector initialization function. If init is NULL, the default function will be used.

Return value:
* SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
e SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

182 Chapter 5. Using ARKODE




User Documentation for ARKODE, v5.6.0

int ARKBraid_SetSpatialNormFn(braid_App app, braid_PtFcnSpatialNorm snorm)
This function sets the spatial norm function provided to XBraid (default SUNBraid_SpatialNorm()).

Arguments:

* app — input, an ARKBraid instance.

* snorm — input, an XBraid spatial norm function. If snorm is NULL, the default function will be used.
Return value:

* SUNBRAID_SUCCESS if successful.

e SUNBRAID_ILLINPUT if app is NULL.

e SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetAccessFn(braid_App app, braid_PtFcnAccess access)

This function sets the user access function provided to XBraid (default ARKBraid_Access()).
Arguments:

* app — input, an ARKBraid instance.

* init — input, an XBraid user access function. If access is NULL, the default function will be used.
Return value:

e SUNBRAID_SUCCESS if successful.

e SUNBRAID_ILLINPUT if app is NULL.

* SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

ARKBraid Get Functions

This section describes the functions that are called by the user to retrieve data from an ARKBraid instance. Each user-
callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred.
The possible return codes are given in Table 5.2.

int ARKBraid_GetVecTmpl (braid_App app, N_Vector *tmpl)

This function returns a vector from the ARKStep memory to use as a template for creating new vectors with
N_VClone() i.e., this is the ARKBraid implementation of SUNBraidVector_GetVecTmpl ().

Arguments:
* app — input, an ARKBraid instance.
* tmpl — output, a template vector.
Return value:
e SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
* SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.
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int ARKBraid_GetARKStepMem (braid_App app, void **arkode_mem)
This function returns the ARKStep memory structure pointer attached with ARKBraid_Create().

Arguments:

* app — input, an ARKBraid instance.

* arkode_mem — output, a pointer to the ARKStep memory structure.
Return value:

* SUNBRAID_SUCCESS if successful.

e SUNBRAID_ILLINPUT fif app is NULL.

* SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

int ARKBraid_GetUserData(braid_App app, void **user_data)
This function returns the user data pointer attached with ARKStepSetUserData().

Arguments:
* app — input, an ARKBraid instance.
* user_data — output, a pointer to the user data structure.
Return value:
* SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
* SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.
int ARKBraid_GetLastBraidFlag(braid_App app, int *last_flag)

This function returns the return value from the most recent XBraid function call.
Arguments:
* app — input, an ARKBraid instance.
* last_flag — output, the XBraid return value.
Return value:
* SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
e SUNBRAID_MEMFAIL if the app content is NULL.
int ARKBraid_GetLastARKStepFlag(braid_App app, int *last_flag)

This function returns the return value from the most recent ARKStep function call.
Arguments:

* app — input, an ARKBraid instance.

* last_flag — output, the ARKStep return value.
Return value:

e SUNBRAID_SUCCESS if successful.

* SUNBRAID_ILLINPUT if app is NULL.

* SUNBRAID_MEMFAIL if the app content is NULL.
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int ARKBraid_GetSolution(braid_App app, realtype *tout, N_Vector yout)

This function returns final time and state stored with the default access function ARKBraid_Access().
Arguments:

* app — input, an ARKBraid instance.

* last_flag — output, the ARKStep return value.
Return value:

* SUNBRAID_SUCCESS if successful.

e SUNBRAID_ILLINPUT if app is NULL.

e SUNBRAID_MEMFAIL if the app content or the stored vector is NULL.

Warning: If providing a non-default access function the final time and state are not stored within the
ARKBraid structure and this function will return an error. In this case the user should allocate space to store
any desired output within the user data pointer attached to ARKStep with ARKStepSetUserData(). This
user data pointer can be retrieved from the ARKBraid structure with ARKBraid_GetUserData().

ARKBraid Interface Functions

This section describes the default XBraid interface functions provided by ARKBraid and called by XBraid to perform
certain actions. Any or all of these functions may be overridden by supplying a user-defined function through the set
functions defined in §5.2.5.2. Each default interface function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call
and a negative value if an error occurred. The possible return codes are given in Table 5.2.

int ARKBraid_Step (braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u, braid_StepStatus
status)

This is the default step function provided to XBraid. The step function is called by XBraid to advance the vector u
from one time to the next using the ARStep memory structure provided to ARKBraid_Create(). A user-defined
step function may be set with ARKBraid_SetStepFn().

Arguments:
* app — input, an ARKBraid instance.
* ustop — input, u vector at the new time tstop.
* fstop — input, the right-hand side vector at the new time zstop.
* u - input/output, on input the vector at the start time and on return the vector at the new time.

* status — input, a status object to query for information about u and to steer XBraid e.g., for temporal
refinement.

Return value:
e SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
* SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

e SUNBRAID_BRAIDFAIL if an XBraid function fails. The return value can be retrieved with ARK-
Braid_GetLastBraidFlag().

e SUNBRAID_SUNFAIL if a SUNDIALS function fails. The return value can be retrieved with ARK-
Braid_GetLastARKStepFlag().
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Note: If providing a non-default implementation of the step function the utility function ARKBraid_-
TakeStep () should be used to advance the input vector u to the new time.

int ARKBraid_Init (braid_App app, realtype t, braid_Vector *u_ptr)

This is the default vector initialization function provided to XBraid. The initialization function is called by
XBraid to create a new vector and set the initial guess for the solution at time t. When using this default function
the initial guess at all time values is the initial condition provided to ARKStepCreate (). A user-defined init
function may be set with ARKBraid_SetInitFn().

Arguments:
* app — input, an ARKBraid instance.
* t —input, the initialization time for the output vector.
* u_ptr — output, the new and initialized SUNBraidVector.
Return value:
e SUNBRAID_SUCCESS if successful.
e SUNBRAID_ILLINPUT if app is NULL.
* SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.
e SUNBRAID_ALLOCFAIL if a memory allocation failed.

Note: If providing a non-default implementation of the vector initialization function the utility functions SUN-
BraidApp_GetVecTmpl () and SUNBraidVector_New() can be helpful when creating the new vector returned
by this function.

int ARKBraid_Access (braid_App app, braid_Vector u, braid_AccessStatus astatus)

This is the default access function provided to XBraid. The access function is called by XBraid to retrieve the
current solution. When using this default function the final solution time and state are stored within the ARKBraid
structure. This information can be retrieved with ARKBraid_GetSolution(). A user-defined access function
may be set with ARKBraid_SetAccessFn().

Arguments:

* app — input, an ARKBraid instance.

* u — input, the vector to be accessed.

* status — input, a status object to query for information about u.
Return value:

e SUNBRAID_SUCCESS if successful.
SUNBRAID_ILLINPUT if any of the inputs are NULL.

SUNBRAID_MEMFAIL if the app content, the wrapped N_Vector, or the ARKStep memory is NULL.
SUNBRAID_ALLOCFAIL if allocating storage for the final solution fails.

SUNBRAID_BRAIDFAIL if an XBraid function fails. The return value can be retrieved with ARK-
Braid_GetLastBraidFlag().
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5.2.5.3 A skeleton of the user’s main program with XBraid

In addition to the header files required for the integration of the ODE problem (see the section §5.1), to use the ARK-
Braid interace, the user’s program must include the header file arkode/arkode_xbraid.h which declares the needed
function prototypes.

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
ARKStep with XBraid for parallel-in-time integration. Most steps are unchanged from the skeleton program presented
in §5.2.1. New or updated steps are bold.

1.

—_— = = e
2 » N = 9

15.

16.

17.

18.

19.

20.

21.
22.

o ® Nk » N

Initialize MPI

If parallelizing in space and time split the global communicator into communicators for space and time with
braid_SplitCommworld().

Set problem dimensions

Set vector of initial values
Create ARKStep object

Specify integration tolerances
Create matrix object

Create linear solver object

Set linear solver optional inputs
Attach linear solver module

Create nonlinear solver object

. Attach nonlinear solver module
. Set nonlinear solver optional inputs

. Set optional inputs

Create ARKBraid interface

Call the constructor ARKBraid_Create() to create the XBraid app structure.
Set optional ARKBraid inputs

See §5.2.5.2 for ARKBraid inputs.

Initialize the ARKBraid interface

Call the initialization function ARKBraid_BraidInit () to create the XBraid core memory structure and attach
the ARKBraid interface app and functions.

Set optional XBraid inputs

See the XBraid documentation for available XBraid options.
Evolve the problem

Call braid_Drive() to evolve the problem with MGRIT.
Get optional outputs

See §5.2.5.2 for ARKBraid outputs.

Deallocate memory for solution vector

Free solver memory

Free linear solver memory
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23. Free ARKBraid and XBraid memory

Call ARKBraid_Free() and braid_Destroy to deallocate the ARKBraid interface and and XBraid core mem-
ory structures, respectively.

24. Finalize MPI

5.2.5.4 Advanced ARKBraid Utility Functions

This section describes utility functions utilized in the ARKStep + XBraid interfacing. These functions are used inter-
nally by the above ARKBraid interface functions but are exposed to the user to assist in advanced usage of ARKODE
and XBraid that requries defining a custom SUNBraidApp implementation.

int ARKBraid_TakeStep (void *arkode_mem, realtype tstart, realtype tstop, N_Vectory, int *ark_flag)

This function advances the vector y from tstart to tstop using a single ARKStep time step with step size i = tstop
- start.

Arguments:
* arkode_mem — input, the ARKStep memory structure pointer.
* tstart — input, the step start time.
* tstop — input, the step stop time.

* y — input/output, on input the solution a zstop and on return, the solution at time tstop if the step was
successful (ark_flag > 0) or the solution at time zstart if the step failed (ark_flag < 0).

* ark_flag — output, the step status flag. If ark_flag is:
= 0 then the step succeeded and, if applicable, met the requested temporal accuracy.
> ( then the step succeeded but failed to meet the requested temporal accuracy.
< 0 then the step failed e.g., a solver failure occurred.

Return value:
If all ARKStep function calls are successful the return value is ARK_SUCCESS, otherwise the return value
is the error flag returned from the function that failed.

5.3 Using the ERKStep time-stepping module

This chapter is concerned with the use of the ERKStep time-stepping module for the solution of nonstift initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the ERKStep user-callable functions and user-supplied functions.

The example programs described in the companion document [70] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKODE package examples subdirectory.

ERKStep uses the input and output constants from the shared ARKODE infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in §14.

The relevant information on using ERKStep’s C and C++ interfaces is detailed in the following sub-sections.
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5.3.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ERKStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to §8 for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

2. Create the SUNDIALS simulation context object.
Call SUNContext_Create() to allocate the SUNContext object.
3. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and N1ocal should be of type sunindextype.

4. Set vector of initial values

To set the vector y® of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y® = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector by
making a call of the form

y® = N_VNeW_:'::‘:z‘: ( . _) ;

and then set its elements by accessing the underlying data where it is located with a call of the form
ydata = N_VGetArrayPointer_***(y0);
For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.
5. Create ERKStep object

Call arkode_mem = ERKStepCreate(...) to create the ERKStep memory block. ERKStepCreate () returns
a void* pointer to this memory structure. See §5.3.2.1 for details.

6. Specify integration tolerances

Call ERKStepSStolerances() or ERKStepSVtolerances() to specify either a scalar relative tolerance and
scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. Alter-
natively, call ERKStepliFtolerances () to specify a function which sets directly the weights used in evaluating
WRMS vector norms. See §5.3.2.2 for details.

7. Set optional inputs

Call ERKStepSet* functions to change any optional inputs that control the behavior of ERKStep from their
default values. See §5.3.2.5 for details.

8. Specify rootfinding problem
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10.

11.

12.

13.

Optionally, call ERKStepRootInit () to initialize a rootfinding problem to be solved during the integration of
the ODE system. See §5.3.2.3 for general details, and §5.3.2.5 for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = ERKStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y® above) will
contain y(teu ). See §5.3.2.4 for details.

Get optional outputs

Call ERKStepGet* functions to obtain optional output. See §5.3.2.7 for details.

Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the
NVECTOR destructor function:

N_VDestroy(y);

Free solver memory
Call ERKStepFree() to free the memory allocated for the ERKStep module.
Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.3.2 ERKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ERKStep time-
stepping module. Some of these are required; however, starting with §5.3.2.5, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKODE’s ERKStep module. In
any case, refer to the preceding section, §5.3.1, for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide their own error handler function (see §5.3.2.5 for details).

5.3.2.1 ERKStep initialization and deallocation functions

void *ERKStepCreate (ARKRhsFn f, realtype t0, N_Vector y0, SUNContext sunctx)

This function allocates and initializes memory for a problem to be solved using the ERKStep time-stepping
module in ARKODE.

Arguments:

 f — the name of the C function (of type ARKRhsFn()) defining the right-hand side function in y =

fty).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(#o).

* sunctx —the SUNContext object (see §4.1)

190

Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

Return value:
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-facing ERK-
Step routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

void ERKStepFree (void **arkode_mem)

This function frees the problem memory arkode_mem created by ERKStepCreate ().
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

Return value: None

5.3.2.2 ERKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ERKSte-
pEvolve(); otherwise default values of reltol = le-4 and abstol = le-9 will be used, which may be entirely
incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of ERKStepSStol-
erances (), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ERKStepSVtolerances () the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error tests, which use a weighted RMS norm on all error-like vectors v:

L 1/2
— . . 2
lvllwrms = (N ;(% ewt,;) ) ;

where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to ERKSteplWFtoler-
ances().

int ERKStepSStolerances (void *arkode_mem, realtype reltol, realtype abstol)

This function specifies scalar relative and absolute tolerances.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

e ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).
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int ERKStepSVtolerances (void *arkode_mem, realtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepWFtolerances (void *arkode_mem, ARKEwtFn efun)

This function specifies a user-supplied function efun to compute the error weight vector ewt.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* efun — the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

(D

2

The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10715 for double-precision).

The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no sense
(and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs
to be set to that noise level. If the different components have different noise levels, then abstol should be a vector.
For example, see the example problem ark_robertson.c, and the discussion of it in the ARKODE Examples
Documentation [70]. In that problem, the three components vary between 0 and 1, and have different noise
levels; hence the atols vector therein. It is impossible to give any general advice on abstol values, because
the appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as
to what those noise levels are.
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(3) Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that accu-
mulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10 from
the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice for reltol is
10~°. In any case, it is a good idea to do a few experiments with the tolerances to see how the computed solution
values vary as tolerances are reduced.

Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

(1) The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ERKStep, with magnitude comparable to abstol or less, is equivalent to zero as
far as the computation is concerned.

(3) Theuser’s right-hand side routine f should never change a negative value in the solution vector y to a non-negative
value in attempt to “fix” this problem, since this can lead to numerical instability. If the f routine cannot tolerate
a zero or negative value (e.g. because there is a square root or log), then the offending value should be changed
to zero or a tiny positive number in a temporary variable (not in the input y vector) for the purposes of computing

f(ty).

(4) ERKStep supports component-wise constraints on solution components, y; < 0, y; < 0,,y; > 0, or y; > 0,
through the user-callable function ERKStepSetConstraints(). At each internal time step, if any constraint
is violated then ERKStep will attempt a smaller time step that should not violate this constraint. This reduced
step size is chosen such that the step size is the largest possible but where the solution component satisfies the

constraint.

(5) Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function, f. When a recoverable error is encountered, ERKStep will
retry the step with a smaller step size, which typically alleviates the problem. However, because this option
involves some additional overhead cost, it should only be exercised if the use of absolute tolerances to control
the computed values is unsuccessful.

5.3.2.3 Rootfinding initialization function

As described in §2.12, while solving the IVP, ARKODE’s time-stepping modules have the capability to find the roots
of a set of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally
called only once, prior to the first call to ERKStepEvolve (), but if the rootfinding problem is to be changed during the
solution, ERKStepRootInit () can also be called prior to a continuation call to ERKStepEvolve().
int ERKStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ERKStepCreate (), and before ERKStepEvolve().
Arguments:

* arkode_mem — pointer to the ERKStep memory block.
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nrtfn — number of functions g;, an integer > 0.

g — name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots are
sought.

Return value:

Notes:

ARK _SUCCESS if successful

ARK_MEM_NULL if the ERKStep memory was NULL
ARK_MEM_FAIL if there was a memory allocation failure
ARK_ILL_INPUT fif nrtfn is greater than zero but g = NULL.

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ERKStep’s rootfinding module, call ERKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ERKStepReInit (), where the new IVP has no rootfind-
ing problem but the prior one did, then call ERKStepRootInit with nrtfn = 0.

5.3.2.4 ERKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input arguments
(itask) specifies one of two modes as to where ERKStep is to return a solution. These modes are modified if the user
has set a stop time (with a call to the optional input function ERKStepSetStopTime ()) or has requested rootfinding.

int ERKStepEvolve (void *arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)

Integrates the ODE over an interval in £.

Arguments:

arkode_mem — pointer to the ERKStep memory block.

tout — the next time at which a computed solution is desired.

yout — the computed solution vector.

tret — the time corresponding to yout (output).

itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < fout < t,, for forward integration,
ort, < tout < t,_; for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (using one of the dense output routines described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,—1 — ¥, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout.

Return value:

ARK _SUCCESS if successful.

ARK_ROOT _RETURN if ERKStepEvolve () succeeded, and found one or more roots. If the number
of root functions, nrtfn, is greater than 1, call ERKStepGetRootInfo() to see which g; were found to
have a root at (*tret).

ARK_TSTOP_RETURN if ERKStepEvolve () succeeded and returned at tstop.
ARK_MEM_NULL if the arkode_mem argument was NULL.
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ARK_NO_MALLOC if arkode_mem was not allocated.

ARK_ILL_INPUT if one of the inputs to ERKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.
(b) A root of one of the root functions was found both at a point ¢ and also very near ¢.
(c) The initial condition violates the inequality constraints.

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach four. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_TOO_MUCH_ACC fif the solver could not satisfy the accuracy demanded by the user for some
internal step.

* ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hyip.

* ARK_VECTOROP_ERR a vector operation error occurred.

Notes:
The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ERKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable. All failure return values are negative and so testing the return argument for
negative values will trap all ERKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ERKStepSetStopTime () before the call to ERKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ERKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a ¢stop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ERKStepSetStopTime ()).

On any error return in which one or more internal steps were taken by ERKStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

5.3.2.5 Optional input functions

There are numerous optional input parameters that control the behavior of ERKStep, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of ERKStep they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:
* General ERKStep options (Table 5.3),
* IVP method solver options (Table 5.4),
 Step adaptivity solver options (Table 5.5), and
* Rootfinding options (Table 5.6).

For the most casual use of ERKStep, relying on the default set of solver parameters, the reader can skip to section on
user-supplied functions, §5.6.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
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call to an ERKStepSet*** function can generally be made from the user’s calling program at any time and, if successful,
takes effect immediately. ERKStepSet*** functions that cannot be called at any time note this in the “Notes:” section
of the function documentation.

Optional inputs for ERKStep

Table 5.3: Optional inputs for ERKStep

Optional input Function name Default

Return ERKStep solver parameters to their de- ERKStepSetDefaults() internal

faults

Set dense output interpolation type ERKStepSetInterpolantType() ARK_INTERP_HER-
MITE

Set dense output polynomial degree ERKStepSetInterpolantDegree() 5

Supply a pointer to a diagnostics output file ERKStepSetDiagnostics() NULL

Supply a pointer to an error output file ERKStepSetErrFile() stderr

Supply a custom error handler function ERKStepSetErrHandlerFn() internal fn

Disable time step adaptivity (fixed-step mode) ERKStepSetFixedStep() disabled

Supply an initial step size to attempt ERKStepSetInitStep() estimated

Maximum no. of warnings for t,, + h = t,, ERKStepSetMaxHnilWarns () 10

Maximum no. of internal steps before fout ERKStepSetMaxNumSteps () 500

Maximum absolute step size ERKStepSetMaxStep () 00

Minimum absolute step size ERKStepSetMinStep () 0.0

Set a value for ¢4, ERKStepSetStopTime () undefined

Interpolate at ¢4, ERKStepInterpolateSetStop- SUNFALSE

Time ()

Disable the stop time ERKStepClearStopTime () N/A

Supply a pointer for user data ERKStepSetUserData() NULL

Maximum no. of ERKStep error test failures ERKStepSetMaxErrTestFails() 7

Set inequality constraints on solution ERKStepSetConstraints() NULL

Set max number of constraint failures ERKStepSetMaxNumConstrFails() 10

int ERKStepSetDefaults (void *arkode_mem)
Resets all optional input parameters to ERKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using ERKStep-
RootInit()).
int ERKStepSetInterpolantType (void *arkode_mem, int itype)

Specifies use of the Lagrange or Hermite interpolation modules (used for dense output — interpolation of solution
output values and implicit method predictors).
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Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* itype — requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_MEM_FAIL if the interpolation module cannot be allocated
* ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already been
initialized
Notes:

The Hermite interpolation module is described in §2.2.1, and the Lagrange interpolation module is de-
scribed in §2.2.2.

This routine frees any previously-allocated interpolation module, and re-creates one according to the spec-
ified argument. Thus any previous calls to ERKStepSetInterpolantDegree () will be nullified.

This routine must be called after the call to ERKStepCreate (). After the first call to ERKStepEvolve()
the interpolation type may not be changed without first calling ERKStepReInit ().

If this routine is not called, the Hermite interpolation module will be used.

int ERKStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* degree — requested polynomial degree.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory or interpolation module are NULL
e ARK_INTERP_FAIL if this is called after ERKStepEvolve()
* ARK_ILL _INPUT if an argument has an illegal value or the interpolation module has already been
initialized
Notes:
Allowed values are between 0 and 5.

This routine should be called after ERKStepCreate () and before ERKStepEvolve (). After the first call to
ERKStepEvolve () the interpolation degree may not be changed without first calling ERKStepReInit ().

If a user calls both this routine and ERKStepSetInterpolantType(), then ERKStepSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ERKStep will be the minimum of ¢ — 1 and
the input degree, for ¢ > 1 where ¢ is the order of accuracy for the time integration method.

Changed in version 5.5.1: When ¢ = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.
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int ERKStepSetDenseOrder (void *arkode_mem, int dord)

This function is deprecated, and will be removed in a future release. Users should transition to calling ERK-
StepSetInterpolantDegree () instead.

int ERKStepSetDiagnostics (void *arkode_mem, FILE *diagfp)

Specifies the file pointer for a diagnostics file where all ERKStep step adaptivity and solver information is written.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* diagfp — pointer to the diagnostics output file.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename () instead.
int ERKStepSetErrFile(void *arkode_mem, FILE *errfp)

Specifies a pointer to the file where all ERKStep warning and error messages will be written if the default internal
error handling function is used.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* errfp — pointer to the output file.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ERKStep
memory pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for
subsequent error messages.

int ERKStepSetErrHandlerFn(void *arkode_mem, ARKErrHandlerFn ehfun, void *eh_data)

Specifies the optional user-defined function to be used in handling error messages.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* ehfun — name of user-supplied error handler function.
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* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Error messages indicating that the ERKStep solver memory is NULL will always be directed to stderr.

int ERKStepSetFixedStep (void *arkode_mem, realtype hfixed)

Disabled time step adaptivity within ERKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass 0.0 to return ERKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since we it gives no assurance of the validity of the
computed solutions. It is primarily provided for code-to-code verification testing purposes.

When using ERKStepSetFixedStep(), any values provided to the functions ERKStepSetInit-
Step(), ERKStepSetAdaptivityFn(), ERKStepSetMaxErrTestFails(), ERKStepSetAdaptiv-
ityMethod(), ERKStepSetCFLFraction(), ERKStepSetErrorBias(), ERKStepSetFixedStep-
Bounds (), ERKStepSetMaxEFailGrowth(), ERKStepSetMaxFirstGrowth(), ERKStepSetMax-
Growth(), ERKStepSetMinReduction(), ERKStepSetSafetyFactor(), ERKStepSetSmallNumE-
Fails() and ERKStepSetStabilityFn() will be ignored, since temporal adaptivity is disabled.

If both ERKStepSetFixedStep () and ERKStepSetStopTime () are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ERKStepSetFixedStep () must be made prior to calling
ERKStepEvolve () to resume integration.

It is not recommended that ERKStepSetFixedStep () be used in concert with ERKStepSetMaxStep ()
or ERKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ERKStepSetInitStep(void *arkode mem, realtype hin)

Specifies the initial time step size ERKStep should use after initialization, re-initialization, or resetting.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hin — value of the initial step to be attempted (# 0).
Return value:

e ARK SUCCESS if successful
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* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass 0.0 to use the default value.

[ 2
By default, ERKStep estimates the initial step size to be h = ﬂ, where 3 is an estimate of the second
Y
derivative of the solution at ¢g.
This routine will also reset the step size and error history.

int ERKStepSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢t + = ¢ on the next internal step,
before ERKStep will instead return with an error.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* mxhnil — maximum allowed number of warning messages (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ERKStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ERKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Passing mxsteps = 0 results in ERKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ERKStepSetMaxStep (void *arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* hmax — maximum absolute value of the time step size (> 0).

200 Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass hmax < 0.0 to set the default value of co.

int ERKStepSetMinStep (void *arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass hmin < 0.0 to set the default value of 0.

int ERKStepSetStopTime (void *arkode_mem, realtype tstop)

Specifies the value of the independent variable ¢ past which the solution is not to proceed.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tstop — stopping time for the integrator.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reenabled
only though a new call to ERKStepSetStopTime()).

A stop time not reached before a call to ERKStepReInit () or ERKStepReset () will remain active but
can be disabled by calling ERKStepClearStopTime ().

int ERKStepSetInterpolateStopTime (void *arkode_mem, booleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* interp — flag indicating to use interpolation (1) or copy (0).

Return value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
New in version 5.6.0.

int ERKStepClearStopTime (void *arkode_mem)
Disables the stop time set with ERKStepSetStopTime ().

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
The stop time can be reenabled though a new call to ERKStepSetStopTime().

New in version 5.5.1.

int ERKStepSetUserData(void *arkode_mem, void *user_data)

Specifies the user data block user_data and attaches it to the main ERKStep memory block.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* user_data — pointer to the user data.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

int ERKStepSetMaxErrTestFails (void *arkode_mem, int maxnef)

Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

» maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 7; set maxnef < 0 to specify this default.
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int ERKStepSetConstraints (void *arkode_mem, N_Vector constraints)

Specifies a vector defining inequality constraints for each component of the solution vector y.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* constraints — vector of constraint flags. Each component specifies the type of solution constraint:

0.0

1.0

constraints[i] = —-1.0
2.0

—2.0

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

R

no constraint is imposed on y;,
Yi Z 07
Yi S 07
yi > 0,
y; < 0.

* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:

The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ERKStepResize() inequality constraint checking will be disabled and a call to ERK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ERKStepSetConstraints() and ERKStepSet-
FixedStep () are incompatible, and should not be used simultaneously.

int ERKStepSetMaxNumConstrFails (void *arkode_mem, int maxfails)

Specifies the maximum number of constraint failures in a step before ERKStep will return with an error.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* maxfails — maximum allowed number of constrain failures.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:

Passing maxfails <= 0 results in ERKStep using the default value (10).
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Optional inputs for IVP method selection

Table 5.4: Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ERKStepSetOrder () 4
Set explicit RK table ERKStepSetTable() internal

Set explicit RK table via its number ERKStepSetTableNum() internal
Set explicit RK table via its name ERKStepSetTableName() internal

int ERKStepSetOrder (void *arkode_mem, int ord)

Specifies the order of accuracy for the ERK integration method.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ord —requested order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The allowed values are 2 < ord < 8. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal ERKStep memory block, it cannot be changed
after the first call to ERKStepEvolve (), unless ERKStepReInit () is called.

int ERKStepSetTable (void *arkode_mem, ARKodeButcherTable B)
Specifies a customized Butcher table for the ERK method.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* B — the Butcher table for the explicit RK method.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables,
see §6.

No error checking is performed to ensure that either the method order p or the embedding order ¢
specified in the Butcher table structure correctly describe the coefficients in the Butcher table.

Error checking is performed to ensure that the Butcher table is strictly lower-triangular (i.e. that it
specifies an ERK method).

If the Butcher table does not contain an embedding, the user must call ERKStepSetFixedStep() to
enable fixed-step mode and set the desired time step size.
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int ERKStepSetTableNum(void *arkode_mem, ARKODE_ERKTublelD etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
e etable — index of the Butcher table.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
etable should match an existing explicit method from §15.1. Error-checking is performed to ensure that the
table exists, and is not implicit.

int ERKStepSetTableName (void *arkode_mem, const char *etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* etable — name of the Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
etable should match an existing explicit method from §15.1. Error-checking is performed to ensure that the
table exists, and is not implicit. This function is case sensitive.

Optional inputs for time step adaptivity

The mathematical explanation of ARKODE'’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.8.
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Table 5.5: Optional inputs for time step adaptivity

Optional input Function name Default
Set a custom time step adaptivity function ERKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ERKStepSetAdaptivityMethod() O
Explicit stability safety factor ERKStepSetCFLFraction() 0.5
Time step error bias factor ERKStepSetErrorBias() 1.5
Bounds determining no change in step size ERKStepSetFixedStepBounds () 1.01.5
Maximum step growth factor on error test fail ERKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ERKStepSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ERKStepSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ERKStepSetMinReduction() 0.1
Time step safety factor ERKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ERKStepSetSmallNumEFails() 2
Explicit stability function ERKStepSetStabilityFn() none

int ERKStepSetAdaptivityFn(void *arkode_mem, ARKAdaptFn hfun, void *h_data)

Sets a user-supplied time-step adaptivity function.

Arguments:

arkode_mem — pointer to the ERKStep memory block.
hfun — name of user-supplied adaptivity function.

h_data — pointer to user data passed to hfun every time it is called.

Return value:

Notes:

ARK _SUCCESS if successful
ARK_MEM_NULL if the ERKStep memory is NULL
ARK_ILL_INPUT if an argument has an illegal value

This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ERKStepSetStabilityFn() should be used instead.

int ERKStepSetAdaptivityMethod(void *arkode_mem, int imethod, int idefault, int pq, realtype *adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

arkode_mem — pointer to the ERKStep memory block.

imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1 is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

pq —flag denoting whether to use the embedding order of accuracy p (0) or the method order of accuracy
g (1) within the adaptivity algorithm. p is the default.

adapt_params[0] — k, parameter within accuracy-based adaptivity algorithms.
adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

adapt_params[2] — ks parameter within accuracy-based adaptivity algorithms.

Return value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ERKStepSetAdaptivityFn().

int ERKStepSetCFLFraction(void *arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ERKStepSetErrorBias (void *arkode_mem, realtype bias)

Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value below 1.0 will imply a reset to the default value.

int ERKStepSetFixedStepBounds (void *arkode_mem, realtype 1b, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
¢ [b — lower bound on window to leave step size fixed (default is 1.0).
* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
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* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any interval not containing 1.0 will imply a reset to the default values.

int ERKStepSetMaxEFailGrowth(void *arkode_mem, realtype etamxf)

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

int ERKStepSetMaxFirstGrowth(void *arkode_mem, realtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.

int ERKStepSetMaxGrowth (void *arkode_mem, realtype mx_growth)

Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* mx_growth — maximum allowed growth factor between consecutive time steps (default is 20.0).
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.
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int ERKStepSetMinReduction(void *arkode_mem, realtype eta_min)

Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* efa_min — minimum allowed reduction factor time step after an error test failure (default is 0.1).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any value > 1.0 or < 0.0 will imply a reset to the default value.

int ERKStepSetSafetyFactor (void *arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ERKStepSetSmallNumEFails (void *arkode_mem, int small_nef)

Specifies the threshold for “multiple” successive error failures before the efamxf parameter from ERKStepSet-
MaxEFailGrowth() is applied.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* small_nef —bound to determine “multiple” for etamxf (default is 2).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

int ERKStepSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

Arguments:
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* arkode_mem — pointer to the ERKStep memory block.

e EStab — name of user-supplied stability function.

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
This function should return an estimate of the absolute value of the maximum stable time step for the the
ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining stability,
but this can be quite useful for problems where the right-hand side function f (¢, y) contains stiff terms.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in §2.12.

Table 5.6: Rootfinding optional input functions

Optional input Function name Default
Direction of zero-crossings to monitor ERKStepSetRootDirection() both
Disable inactive root warnings ERKStepSetNoInactiveRootWarn() enabled

int ERKStepSetRootDirection(void *arkode_mem, int *rootdir)

Specifies the direction of zero-crossings to be located and returned.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* rootdir — state array of length nrifn, the number of root functions g; (the value of nrtfn was supplied
in the call to ERKStepRootInit()). If rootdir[i] == O then crossing in either direction for g;
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default behavior is to monitor for both zero-crossing directions.

int ERKStepSetNoInactiveRootWarn(void *arkode_mem)

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

Return value:
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e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
ERKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more com-
ponents g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), ERKStep will issue a warning which can be
disabled with this optional input function.

5.3.2.6 Interpolated output function

An optional function ERKStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ERKStepEvolve (), as it provides interpolated values
either of y or of its derivatives (up to the 5th derivative) interpolated to any value of ¢ in the last internal step taken by
ERKStepEvolve(). Internally, this “dense output” or “continuous extension” algorithm is identical to the algorithm
used for the maximum order implicit predictors, described in §2.11.5.2, except that derivatives of the polynomial model
may be evaluated upon request.

int ERKStepGetDky (void *arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time ¢, i.e., y(k) (t), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ERKStepSetInterpolantDegree (). The user may request k in the range
{O,..., min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ¢ —the value of the independent variable at which the derivative is to be evaluated.
* k —the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
e ARK SUCCESS if successful
* ARK_BAD_K if k is not in the range {O,..., min(degree, kmax)}.
* ARK_BAD_T if t is not in the interval [t,, — h,, t,]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
It is only legal to call this function after a successful return from ERKStepEvolve().

A user may access the values t,, and h,, via the functions ERKStepGetCurrentTime () and ERKStepGet-
LastStep(), respectively.
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5.3.2.7 Optional output functions
ERKStep provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1. General ERKStep output routines are in §5.3.2.7,

2. Output routines regarding root-finding results are in §5.3.2.7,

3. General usability routines (e.g. to print the current ERKStep parameters, or output the current Butcher table) are
in §5.3.2.7.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of various
methods inside ERKStep. For example:

* The counters nsteps and nf_evals provide a rough measure of the overall cost of a given run, and can be compared
between runs with different solver options to suggest which set of options is the most efficient.

 The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

Main solver optional output functions

Table 5.7: Main solver optional output functions

Optional output Function name

Size of ERKStep real and integer workspaces ERKStepGetiorkSpace ()
Cumulative number of internal steps ERKStepGetNumSteps ()

Actual initial time step size used ERKStepGetActualInitStep()
Step size used for the last successful step ERKStepGetLastStep()

Step size to be attempted on the next step ERKStepGetCurrentStep()
Current internal time reached by the solver ERKStepGetCurrentTime ()
Suggested factor for tolerance scaling ERKStepGetTolScaleFactor()
Error weight vector for state variables ERKStepGetErrieights ()
Single accessor to many statistics at once ERKStepGetStepStats()

Print all statistics ERKStepPrintAllStats()

Name of constant associated with a return flag ERKStepGetReturnFlagName ()
No. of explicit stability-limited steps ERKStepGetNumExpSteps ()

No. of accuracy-limited steps ERKStepGetNumAccSteps()

No. of attempted steps ERKStepGetNumStepAttempts ()
No. of calls to f function ERKStepGetNumRhsEvals ()

No. of local error test failures that have occurred ERKStepGetNumErrTestFails()
Current ERK Butcher table ERKStepGetCurrentButcherTable()
Estimated local truncation error vector ERKStepGetEstLocalErrors()
Single accessor to many statistics at once ERKStepGetTimestepperStats()
Number of constraint test failures ERKStepGetNumConstrFails()
Retrieve a pointer for user data ERKStepGetUserData()

int ERKStepGetWorkSpace (void *arkode_mem, long int *lenrw, long int *leniw)
Returns the ERKStep real and integer workspace sizes.

Arguments:
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* arkode_mem — pointer to the ERKStep memory block.

e lenrw — the number of realtype values in the ERKStep workspace.

* leniw — the number of integer values in the ERKStep workspace.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumSteps (void *arkode_mem, long int *nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nsteps — number of steps taken in the solver.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetActualInitStep (void *arkode_mem, realtype *hinused)
Returns the value of the integration step size used on the first step.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hinused — actual value of initial step size.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
Even if the value of the initial integration step was specified by the user through a call to ERKStepSe-
tInitStep(), this value may have been changed by ERKStep to ensure that the step size fell within the
prescribed bounds (Ayin < ho < Apmaq), Or to satisfy the local error test condition.

int ERKStepGetLastStep (void *arkode_mem, realtype *hlast)

Returns the integration step size taken on the last successful internal step.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hlast — step size taken on the last internal step.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentStep (void *arkode_mem, realtype *hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
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* hcur — step size to be attempted on the next internal step.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentTime (void *arkode_mem, realtype *tcur)

Returns the current internal time reached by the solver.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* tcur — current internal time reached.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetTolScaleFactor (void *arkode_mem, realtype *tolsfac)

Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetErrWeights (void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* eweight — solution error weights at the current time.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for eweight, that will be filled in by this function.

int ERKStepGetStepStats(void *arkode_mem, long int *nsteps, realtype *hinused, realtype *hlast, realtype *hcur,
realtype *tcur)

Returns many of the most useful optional outputs in a single call.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nsteps — number of steps taken in the solver.

* hinused — actual value of initial step size.
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* hlast — step size taken on the last internal step.
* hcur — step size to be attempted on the next internal step.
* tcur — current internal time reached.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator and other statistics.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* outfile — pointer to output file.
* fimt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl1,
valuel,key2,value2,...

Return value:
* ARK_SUCCESS - if the output was successfully.
e CV_MEM_NULL - if the ERKStep memory was NULL.
e CV_ILL_INPUT - if an invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 5.2.0.

char *ERKStepGetReturnFlagName (long int flag)
Returns the name of the ERKStep constant corresponding to flag. See Appendix: ARKODE Constants.

Arguments:
* flag — a return flag from an ERKStep function.

Return value:
The return value is a string containing the name of the corresponding constant.

int ERKStepGetNumExpSteps (void *arkode_mem, long int *expsteps)

Returns the cumulative number of stability-limited steps taken by the solver (so far).
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* expsteps — number of stability-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL
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int ERKStepGetNumAccSteps (void *arkode_mem, long int *accsteps)

Returns the cumulative number of accuracy-limited steps taken by the solver (so far).
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumStepAttempts (void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* step_attempts — number of steps attempted by solver.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumRhsEvals (void *arkode_mem, long int *nf_evals)
Returns the number of calls to the user’s right-hand side function, f (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nf_evals — number of calls to the user’s f(¢,y) function.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ERKStep memory was NULL
int ERKStepGetNumErrTestFails (void *arkode_mem, long int *netfails)

Returns the number of local error test failures that have occurred (so far).
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* netfails — number of error test failures.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentButcherTable (void *arkode_mem, ARKodeButcherTable *B)

Returns the Butcher table currently in use by the solver.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* B — pointer to the Butcher table structure.
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Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy 5/
int stages; /* number of stages %/
realtype **A; /% Butcher table coefficients */
realtype *c; /* canopy node coefficients %/
realtype *b; /* root node coefficients %/
realtype “d; /* embedding coefficients %/

} *ARKodeButcherTable;

For more details see $6.

int ERKStepGetEstLocalErrors (void *arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:
e arkode_mem — pointer to the ERKStep memory block.
* ele — vector of estimated local truncation errors.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ERKStepEvolve() (i.e., it returned a
non-negative value).

The ele vector, together with the eweight vector from ERKStepGetErrifeights (), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically,
that error test uses the WRMS norm of a vector whose components are the products of the components of
these two vectors. Thus, for example, if there were recent error test failures, the components causing the
failures are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

int ERKStepGetTimestepperStats (void *arkode_mem, long int *expsteps, long int *accsteps, long int
*step_attempts, long int *nf_evals, long int *netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
* expsteps — number of stability-limited steps taken in the solver.
* accsteps — number of accuracy-limited steps taken in the solver.

* step_attempts — number of steps attempted by the solver.

5.3. Using the ERKStep time-stepping module 217



User Documentation for ARKODE, v5.6.0

* nf_evals — number of calls to the user’s f (¢, y) function.
* netfails — number of error test failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumConstrFails (void *arkode_mem, long int *nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nconstrfails — number of constraint test failures.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ERKStepSetUserData().

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* user_data — memory reference to a user data pointer
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

New in version 5.3.0.

Rootfinding optional output functions

Table 5.8: Rootfinding optional output functions

Optional output Function name
Array showing roots found ERKStepGetRootInfo()
No. of calls to user root function ERKStepGetNumGEvals()

int ERKStepGetRootInfo (void *arkode_mem, int *rootsfound)

Returns an array showing which functions were found to have a root.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root (the value
of nritfn was supplied in the call to ERKStepRootInit()). Fori = 0... nrtfn-1, rootsfound[i] is
nonzero if g; has a root, and 0 if not.

Return value:

e ARK SUCCESS if successful
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* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction
of zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int ERKStepGetNumGEvals (void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ngevals — number of calls made to g so far.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table, or even to test a provided Butcher table to determine its analytical order
of accuracy. While none of these would typically be called during the course of solving an initial value problem, these
may be useful for users wishing to better understand ERKStep and/or specific Runge—Kutta methods.

Table 5.9: General usability functions

Optional routine Function name
Output all ERKStep solver parameters ERKStepliriteParameters()
Output the current Butcher table ERKStepWriteButcher ()

int ERKStepWriteParameters (void *arkode_mem, FILE *fp)
Outputs all ERKStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

int ERKStepWriteButcher (void *arkode_mem, FILE *fp)
Outputs the current Butcher table to the provided file pointer.

Arguments:
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* arkode_mem — pointer to the ERKStep memory block.

* fp — pointer to use for printing the Butcher table.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

5.3.2.8 ERKStep re-initialization function

To reinitialize the ERKStep module for the solution of a new problem, where a prior call to ERKStepCreate () has been
made, the user must call the function ERKStepReInit (). The new problem must have the same size as the previous
one. This routine retains the current settings for all ERKstep module options and performs the same input checking
and initializations that are done in ERKStepCreate (), but it performs no memory allocation as is assumes that the
existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set zsfop value specified
via a call to ERKStepSetStopTime (). Following a successful call to ERKStepReInit (), call ERKStepEvolve()
again for the solution of the new problem.

The use of ERKStepReInit () requires that the number of Runge—Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order ¢ is left unchanged.

One important use of the ERKStepReInit () function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int ERKStepReInit (void *arkode_mem, ARKRhsFn f, realtype t0, N_Vector y0)

Provides required problem specifications and re-initializes the ERKStep time-stepper module.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* f — the name of the C function (of type ARKRhsFn()) defining the right-hand side function in y =
fty).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(#g).
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
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* ARK_ILL_INPUT if an argument has an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReInit () also sends an error message to the error handler function.

5.3.2.9 ERKStep reset function

To reset the ERKStep module to a particular state (tg,y(tr)) for the continued solution of a problem, where a prior
call to ERKStepCreate () has been made, the user must call the function ERKStepReset (). Like ERKStepReInit ()
this routine retains the current settings for all ERKStep module options and performs no memory allocations but, un-
like ERKStepReInit (), this routine performs only a subset of the input checking and initializations that are done in
ERKStepCreate(). In particular this routine retains all internal counter values and the step size/error history. Like
ERKStepReInit(), acall to ERKStepReset () will delete any previously-set tstop value specified via a call to ERK-
StepSetStopTime (). Following a successful call to ERKStepReset (), call ERKStepEvolve () again to continue
solving the problem. By default the next call to ERKStepEvolve () will use the step size computed by ERKStep prior
to calling ERKStepReset (). To set a different step size or have ERKStep estimate a new step size use ERKStepSe-
tInitStep().

One important use of the ERKStepReset () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to ERKStepReset (). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ERKStepReset (void *arkode_mem, realtype tR, N_Vector yR)

Resets the current ERKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* R — the value of the independent variable ¢.
* YR — the value of the dependent variable vector y(tg).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
e ARK_ILL_INPUT if an argument has an illegal value.

Notes:
By default the next call to ERKStepEvolve () will use the step size computed by ERKStep prior to calling
ERKStepReset (). To set a different step size or have ERKStep estimate a new step size use ERKStepSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReset () also sends an error message to the error handler function.

5.3. Using the ERKStep time-stepping module 221



User Documentation for ARKODE, v5.6.0

5.3.2.10 ERKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ERKStep integrator may be “resized” be-
tween integration steps, through calls to the ERKStepResize () function. This function modifies ERKStep’s internal
memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics. It is assumed
that the dynamical time scales before and after the vector resize will be comparable, so that all time-stepping heuristics
prior to calling ERKStepResize () remain valid after the call. If instead the dynamics should be recomputed from
scratch, the ERKStep memory structure should be deleted with a call to ERKStepFree (), and recreated with a call to
ERKStepCreate().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn())is not supplied (i.e., is set to NULL), then all existing vectors internal to ERKStep will be destroyed
and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale < 0 is specified, the default
of 1.0 will be used.

int ERKStepResize (void *arkode_mem, N_Vector yR, realtype hscale, realtype tR, ARKVecResizeFn resize, void
*resize_data)

Re-sizes ERKStep with a different state vector but with comparable dynamical time scale.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* YR — the newly-sized solution vector, holding the current dependent variable values y(tpg).
* hscale — the desired time step scaling factor (i.e. the next step will be of size h*hscale).
* {R — the current value of the independent variable ¢ (this must be consistent with yR).
* resize — the user-supplied vector resize function (of type ARKVecResizeFn().

* resize_data — the user-supplied data structure to be passed to resize when modifying internal ERKStep
vectors.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
e ARK NO_MALLOC if arkode_mem was not allocated.
e ARK_ILL_INPUT if an argument has an illegal value.

Notes:
If an error occurred, ERKStepResize () also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ERKStepResize () will disable constraint checking.
A call to ERKStepSetConstraints() is required to re-enable constraint checking.
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Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to ERKStepRe-
size(), so the new absolute tolerance vector should be re-set following each call to ERKStepResize () through a
new call to ERKStepSVtolerances().

If scalar-valued tolerances or a tolerance function was specified through either ERKStepSStolerances() or ERK-
StepWFtolerances (), then these will remain valid and no further action is necessary.

Note: For an example showing usage of the similar ARKStepResize () routine, see the supplied serial C example
problem, ark_heat1D_adapt.c.

5.3.3 Relaxation Methods

This section describes user-callable functions for applying relaxation methods with ERKStep. For more information
on relaxation Runge—Kutta methods see §2.14.

5.3.3.1 Enabling or Disabling Relaxation

int ERKStepSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)

Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

Parameters

» arkode_mem — the ERKStep memory structure

* rfn - the user-defined function to compute the relaxation function &(y)

* rjac - the user-defined function to compute the relaxation Jacobian &'(y)
Return values

* ARK_SUCCESS — the function exited successfully

* ARK_MEM_NULL — arkode_mem was NULL

e ARK_ILL_INPUT - an invalid input combination was provided (see the output error message
for more details)

* ARK_MEM_FAIL — a memory allocation failed

Warning: Applying relaxation requires using a method of at least second order with b; > 0. If these
conditions are not satisfied, ERKStepEvolve () will return with an error during initialization.

Note: When combined with fixed time step sizes, ERKStep will attempt each step using the specified step size.
If the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If the
step fails or applying relaxation fails, ERKStepEvolve () will return with an error.

New in version 5.6.0.
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5.3.3.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ERKStepSetRelaxEtaFail (void *arkode_mem, sunrealtype eta_rf)

Sets the step size reduction factor applied after a failed relaxation application.
The default value is 0.25. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ERKStep memory structure
» eta_rf - the step size reduction factor
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepSetRelaxLowerBound (void *arkode_mem, sunrealtype lower)
Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 0.8. Input values < 0 or > 1 will result in the default value being used.
Parameters
* arkode_mem — the ERKStep memory structure
* lower - the relaxation parameter lower bound
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepSetRelaxUpperBound (void *arkode_mem, sunrealtype upper)
Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 1.2. Input values < 1 will result in the default value being used.
Parameters
* arkode_mem — the ERKStep memory structure
* upper — the relaxation parameter upper bound
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
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* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL

New in version 5.6.0.

int ERKStepSetRelaxMaxFails (void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
* arkode_mem — the ERKStep memory structure
» max_fails - the maximum number of failed relaxation applications allowed in a step
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepSetRelaxMaxIters (void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ERKStepSe-
tRelaxResTol () and ERKStepSetRelaxTol ()), the step will be repeated with a smaller step size (determined
by ERKStepSetRelaxEtaFail()).

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
» arkode_mem — the ERKStep memory structure
* max_iters — the maximum number of solver iterations allowed
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepSetRelaxSolver (void *arkode_mem, ARKRelaxSolver solver)
Sets the nonlinear solver method used to compute the relaxation parameter.

The default value is ARK_RELAX_NEWTON.
Parameters
» arkode_mem — the ERKStep memory structure
* solver — the nonlinear solver to use: ARK_RELAX_BRENT or ARK_RELAX_NEWTON
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
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* ARK_ILL_INPUT - an invalid solver option was provided
New in version 5.6.0.

int ERKStepSetRelaxResTol (void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.46).

If the residual or solution tolerance (see ERKStepSetRelaxMaxIter()) is not reached within the maximum
number of iterations (determined by ERKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 4¢ where ¢ is floating-point precision. Input values < 0 will result in the default value being
used.

Parameters
» arkode_mem — the ERKStep memory structure
» res_tol — the nonlinear solver residual tolerance to use
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepSetRelaxTol (void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)

Sets the nonlinear solver relative and absolute tolerance on changes in » when solving (2.46).

If the residual (see ERKStepSetRelaxResTol()) or solution tolerance is not reached within the maximum
number of iterations (determined by ERKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ERKStepSetRelaxEtaFail()).

The default relative and absolute tolerances are 4e and 10~14, respectively, where € is floating-point precision.
Input values < 0 will result in the default value being used.

Parameters
* arkode_mem — the ERKStep memory structure
» rel_tol - the nonlinear solver relative solution tolerance to use
* abs_tol - the nonlinear solver absolute solution tolerance to use
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL

New in version 5.6.0.
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5.3.3.3 Optional Output Functions
This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ERKStepGetNumRelaxFnEvals (void *arkode_mem, long int *r_evals)

Get the number of times the user’s relaxation function was evaluated.
Parameters
* arkode_mem — the ERKStep memory structure
* r_evals - the number of relaxation function evaluations
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepGetNumRelaxJacEvals(void *arkode_mem, long int *J_evals)

Get the number of times the user’s relaxation Jacobian was evaluated.
Parameters
» arkode_mem — the ERKStep memory structure
* J_evals - the number of relaxation Jacobian evaluations
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepGetNumRelaxFails(void *arkode_mem, long int *fails)
Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ERKStepGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ERKStepSetRelaxBoundFac-

tor(Q)).

Parameters
* arkode_mem — the ERKStep memory structure
» fails - the total number of failed relaxation attempts

Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL

New in version 5.6.0.
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int ERKStepGetNumRelaxBoundFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter was deemed unacceptable.
Parameters

* arkode_mem — the ERKStep memory structure

» fails - the number of failures due to an unacceptable relaxation parameter value

Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepGetNumRelaxSolveFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter nonlinear solver failed.
Parameters
» arkode_mem — the ERKStep memory structure
» fails - the number of relaxation nonlinear solver failures
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
New in version 5.6.0.

int ERKStepGetNumRelaxSolveIters (void *arkode_mem, long int *iters)

Get the number of relaxation parameter nonlinear solver iterations.

Parameters
» arkode_mem — the ERKStep memory structure
* iters — the number of relaxation nonlinear solver iterations

Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL

New in version 5.6.0.
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5.4 Using the SPRKStep time-stepping module

This chapter is concerned with the use of the SPRKStep time-stepping module for the solution of Hamiltonian initial
value problems (IVPs) of the form (2.9) in a C or C++ language setting. The following sections discuss the header
files and the layout of the user’s main program, and provide descriptions of the SPRKStep user-callable functions and
user-supplied functions.

The example programs located in the source code examples/arkode folder, may be helpful as templates for new
codes. In particular,

* examples/arkode/C_serial/ark_harmonic_symplectic.c
e examples/arkode/C_serial/ark_damped_harmonic_symplectic.c, and
e examples/arkode/C_serial/ark_kepler.c

demonstrate SPRKStep usage.

SPRKStep uses the input and output constants from the shared ARKODE infrastructure. These are defined as needed
in this chapter, but for convenience the full list is provided separately in §14.

The relevant information on using SPRKStep’s C and C++ interfaces is detailed in the following subsections.

5.4.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the SPRKStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to §8 for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

2. Create the SUNDIALS simulation context object.
Call SUNContext_Create() to allocate the SUNContext object.
3. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal. The problem size
N is the size including both the q and p variables.

Note: The variables N and N1ocal should be of type sunindextype.

4. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation. The vector should include both the g and p variables.

For most native SUNDIALS vector implementations, use a call of the form

y® = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of y already exists. For some GPU-enabled vectors, a
similar constructor can be used to provide host and device data pointers. If the data array does not already exist,
create a new vector by making a call of the form
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10.

yO = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.

Create SPRKStep object

Call arkode_mem = SPRKStepCreate(...) to create the SPRKStep memory block. SPRKStepCreate()

returns a void* pointer to this memory structure. See §5.4.2.1 for details.
Specify time step size

Call SPRKStepSetFixedStep() to set the fixed time step size. .. or SPRKStepAdaptivityFn() to specify
either a fixed time-step .. size or a callback function that adapts the time-step size. SPRKStep .. does not support
error-based adaptivity like other ARKODE time-stepper .. modules due to the incompatibility with symplectic
methods.

Set optional inputs

Call SPRKStepSet* functions to change any optional inputs that control the behavior of SPRKStep from their
default values. See §5.4.2.4 for details.

. Specify rootfinding problem

Optionally, call SPRKStepRootInit () to initialize a rootfinding problem to be solved during the integration of
the ODE system. See §5.4.2.2 for general details, and §5.4.2.4 for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = SPRKStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y® above) will
contain y(tey ). See §5.4.2.3 for details.

Get optional outputs

Call SPRKStepGet* functions to obtain optional output. See §5.4.2.6 for details.

11. Deallocate memory for solution vector
Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:
N_VDestroy(y);

12. Free solver memory
Call SPRKStepFree() to free the memory allocated for the SPRKStep module.

13. Finalize MPI, if used
Call MPI_Finalize to terminate MPL.
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5.4.2 SPRKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the SPRKStep
time-stepping module. Some of these are required; however, starting with §5.4.2.4, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKODE’s SPRKStep module.
In any case, refer to the preceding section, §5.4.1, for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide their own error handler function (see §5.4.2.4 for details).

5.4.2.1 SPRKStep initialization and deallocation functions

void *SPRKStepCreate (ARKRhsFn f1, ARKRhsFn {2, realtype t0, N_Vector y0, SUNContext sunctx)
This function allocates and initializes memory for a problem to be solved using the SPRKStep time-stepping

module in ARKODE.
Parameters
 f1 — the name of the C function (of type ARKRhsFn()) defining f; (t,q) = %{tl’q)
 £2 — the name of the C function (of type ARKRhsFn()) defining f5(¢,p) = %;’p)

¢ t0 — the initial value of ¢
* yO0 — the initial condition vector y(to)
* sunctx — the SUNContext object (see §4.1)

Returns
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing SPRKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an
error message will be printed to stderr.

Warning: SPRKStep requires a partitioned problem where £1 should only modify the q variables and £2
should only modify the p variables (or vice versa). However, the vector passed to these functions is the full
vector with both p and q. The ordering of the variables is determined implicitly by the user when they set the
initial conditions.

void SPRKStepFree (void **arkode_mem)
This function frees the problem memory arkode_mem created by SPRKStepCreate().

Parameters

» arkode_mem — pointer to the SPRKStep memory block.
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5.4.2.2 Rootfinding initialization function

As described in §2.12, while solving the IVP, ARKODE’s time-stepping modules have the capability to find the roots
of a set of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally
called only once, prior to the first call to SPRKStepEvolve (), but if the rootfinding problem is to be changed during
the solution, SPRKStepRootInit () can also be called prior to a continuation call to SPRKStepEvolve().

Note: The solution is interpolated to the times at which roots are found.

int SPRKStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
SPRKStepCreate(), and before SPRKStepEvolve().

To disable the rootfinding feature after it has already been initialized, or to free memory associated with SPRK-
Step’s rootfinding module, call SPRKStepRootInit () with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to SPRKStepReInit (), where the new IVP has no rootfinding
problem but the prior one did, then call SPRKStepRootInit () with nrifn = 0.

Parameters
* arkode_mem — pointer to the SPRKStep memory block.
* nrtfn - number of functions g;, an integer > 0.

* g — name of user-supplied function, of type ARKRootFn (), defining the functions g; whose
roots are sought.

Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory was NULL
e ARK_MEM_FATIL - if there was a memory allocation failure

* ARK_ILL_INPUT - if nrtfn is greater than zero but g = NULL.

5.4.2.3 SPRKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input arguments
(itask) specifies one of two modes as to where SPRKStep is to return a solution. These modes are modified if the user
has set a stop time (with a call to the optional input function SPRKStepSetStopTime ()) or has requested rootfinding.

int SPRKStepEvolve (void *arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)

Integrates the ODE over an interval in ¢.
Parameters
 arkode_mem — pointer to the SPRKStep memory block.
* tout - the next time at which a computed solution is desired.
* yout — the computed solution vector.

* tret — the time corresponding to yout (output).
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 itask - a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken
a user-specified output time, tout, in the direction of integration, i.e. t,_1 < tout < t,, for
forward integration, or ¢,, < tout < t,_; for backward integration. It will then compute
an approximation to the solution y(tout) by interpolation (using one of the dense output
routines described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,—1 — yn
and then return control back to the calling program. If this step will overtake fout then the
solver will again return an interpolated result; otherwise it will return a copy of the internal
solution ¥, in the vector yout.

Return values
e ARK_SUCCESS - if successful.

e ARK_ROOT_RETURN - if SPRKStepEvolve() succeeded, and found one or more roots. If
the number of root functions, nrifn, is greater than 1, call SPRKStepGetRootInfo() to see
which g; were found to have a root at (*tret).

e ARK_TSTOP_RETURN — if SPRKStepEvolve () succeeded and returned at tstop.
o ARK_MEM_NULL - if the arkode_mem argument was NULL.
e ARK_NO_MALLOC — if arkode_mem was not allocated.

* ARK_ILL_INPUT - if one of the inputs to SPRKStepEvolve() is illegal, or some other input
to the solver was either illegal or missing. Details will be provided in the error message.
Typical causes of this failure are a root of one of the root functions was found both at a point
t and also very near t.

* ARK_TOO_MUCH_WORK — if the solver took mxstep internal steps but could not reach fout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_ERR_FAILURE - if error test failures occurred either too many times (ark_maxnef) dur-
ing one internal time step or occurred with |h| = hpip.

* ARK_VECTOROP_ERR — a vector operation error occurred.

Note: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
SPRKStepCreate().

In ARK_ONE_STEP mode, rout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all SPRKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to SPRKStepSetStopTime () before the call to SPRKStepEvolve () to specify a fixed stop
time to end the time step and return to the user. Upon return from SPRKStepEvolve (), a copy of the internal
solution ¥,, will be returned in the vector yout. Once the integrator returns at a zstop time, any future testing
for tstop is disabled (and can be re-enabled only though a new call to SPRKStepSetStopTime()). Interpolated
outputs may or may not conserve the Hamiltonian. Our testing has shown that Lagrange interpolation typically
performs well in this regard, while Hermite interpolation does not. As such, SPRKStep uses the Lagrange
interpolation module by default.

On any error return in which one or more internal steps were taken by SPRKStepEvolve (), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.
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5.4.2.4 Optional input functions

There are numerous optional input parameters that control the behavior of SPRKStep, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of SPRKStep they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:
* General SPRKStep options (Table 5.10),
e IVP method solver options (Table 5.11),
* Rootfinding options (Table 5.12).

For the most casual use of SPRKStep, relying on the default set of solver parameters, the reader can skip to section on
user-supplied functions, §5.6.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
call to a SPRKStepSet*** function can generally be made from the user’s calling program at any time and, if successful,
takes effect immediately. For SPRKStepSet*** functions that cannot be called at any time, this is explicitly noted in
the function documentation.

Optional inputs for SPRKStep

Table 5.10: Optional inputs for SPRKStep

Optional input Function name Default

Return SPRKStep solver parameters to their de- SPRKStepSetDefaults() internal

faults

Set dense output interpolation type SPRKStepSetInterpolant- ARK_INTERP_LA-
Type () GRANGE

Set dense output polynomial degree SPRKStepSetInterpolantDe- 5
gree()

Supply a pointer to a diagnostics output file SPRKStepSetDiagnostics() NULL

Supply a pointer to an error output file SPRKStepSetErrFile() stderr

Supply a custom error handler function
Set fixed step size (required user input)

SPRKStepSetErrHandlerFn()
SPRKStepSetFixedStep ()

internal fn
user defined

Maximum no. of internal steps before fout SPRKStepSetMaxNumSteps () 500

Set a value for 40, SPRKStepSetStopTime () undefined
Disable the stop time SPRKStepClearStopTime () N/A
Supply a pointer for user data SPRKStepSetUserData() NULL

int SPRKStepSetDefaults (void *arkode_mem)

Resets all optional input parameters to SPRKStep’s original default values.

Parameters

» arkode_mem — pointer to the SPRKStep memory block.

Return values

e ARK_SUCCESS - if successful

* ARK_MEM_NULL - if the SPRKStep memory is NULL
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e ARK_ILL_INPUT - if an argument has an illegal value

Note: Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using SPRKStepRoo-
tInit()).

int SPRKStepSetInterpolantType (void *arkode_mem, int itype)

Specifies use of the Lagrange or Hermite interpolation modules (used for dense output — interpolation of solution
output values and implicit method predictors).

Parameters

» arkode_mem — pointer to the SPRKStep memory block.

* itype - requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)
Return values

* ARK_SUCCESS - if successful

* ARK_MEM_NULL - if the SPRKStep memory is NULL

* ARK_MEM_FAIL - if the interpolation module cannot be allocated

e ARK_ILL_INPUT - if the itype argument is not recognized or the interpolation module has
already been initialized

Note: The Hermite interpolation module is described in §2.2.1, and the Lagrange interpolation module is
described in §2.2.2.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument. Thus any previous calls to SPRKStepSetInterpolantDegree () will be nullified.

This routine must be called after the call to SPRKStepCreate (). After the first call to SPRKStepEvolve () the
interpolation type may not be changed without first calling SPRKStepReInit ().

If this routine is not called, the Lagrange interpolation module will be used.

Interpolated outputs may or may not conserve the Hamiltonian. Our testing has shown that Lagrange interpolation
typically performs well in this regard, while Hermite interpolation does not.

int SPRKStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values). Allowed values are between 0 and 5.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* degree — requested polynomial degree.
Return values
» ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory or interpolation module are NULL
e ARK_INTERP_FAIL - if this is called after SPRKStepEvolve()

e ARK_ILL_INPUT - if an argument has an illegal value or the interpolation module has already
been initialized
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Note: This routine should be called after SPRKStepCreate() and before SPRKStepEvolve(). After the
first call to SPRKStepEvolve() the interpolation degree may not be changed without first calling SPRK-
StepReInit().

If a user calls both this routine and SPRKStepSetInterpolantType(), then SPRKStepSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on which
it is based, the actual polynomial degree that is used by SPRKStep will be the minimum of ¢ — 1 and the input
degree, for ¢ > 1 where q is the order of accuracy for the time integration method.

When g = 1, a linear interpolant is the default to ensure values obtained by the integrator are returned at the ends
of the time interval.

int SPRKStepSetErrFile (void *arkode_mem, FILE *errfp)

Specifies a pointer to the file where all SPRKStep warning and error messages will be written if the default
internal error handling function is used.

The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the SPRKStep memory
pointer is NULL). This use of the function is strongly discouraged.

Parameters
 arkode_mem — pointer to the SPRKStep memory block.
» errfp — pointer to the output file.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

Note: If used, this routine should be called before any other optional input functions, in order to take effect for
subsequent error messages.

int SPRKStepSetErrHandlerFn(void *arkode_mem, ARKErrHandlerFn ehfun, void *eh_data)

Specifies the optional user-defined function to be used in handling error messages.

Parameters

* arkode_mem — pointer to the SPRKStep memory block.

* ehfun - name of user-supplied error handler function.

* eh_data - pointer to user data passed to ehfun every time it is called.
Return values

* ARK_SUCCESS - if successful

* ARK_MEM_NULL - if the SPRKStep memory is NULL

e ARK_ILL_INPUT - if an argument has an illegal value

Note: Error messages indicating that the SPRKStep solver memory is NULL will always be directed to stderr.

236

Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

int SPRKStepSetFixedStep (void *arkode_mem, realtype hfixed)
Sets the time step size used within SPRKStep.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
» hfixed - value of the fixed step size to use.
Return values
» ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

int SPRKStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before SPRKStep will return with an error.

Passing mxsteps = 0 results in SPRKStep using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).
Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return values
» ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

int SPRKStepSetStopTime (void *arkode_mem, realtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reenabled only
though a new call to SPRKStepSetStopTime()).

A stop time not reached before a call to SPRKStepReInit () or SPRKStepReset () will remain active but can
be disabled by calling SPRKStepClearStopTime ().

Parameters
 arkode_mem — pointer to the SPRKStep memory block.
* tstop — stopping time for the integrator.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value
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int SPRKStepClearStopTime (void *arkode_mem)
Disables the stop time set with SPRKStepSetStopTime ().

The stop time can be reenabled though a new call to SPRKStepSetStopTime().
Parameters
» arkode_mem — pointer to the SPRKStep memory block.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory is NULL

int SPRKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main SPRKStep memory block.

If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument; otherwise
NULL is passed.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
» user_data — pointer to the user data.
Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

Optional inputs for IVP method selection

Table 5.11: Optional inputs for IVP method selection

Optional input Function name Default

Set integrator method order ~ SPRKStepSetOrder () 4

Set SPRK method SPRKStepSetMethod() ARKODE_SPRK_MCLACHLAN_4_4

Set SPRK method by name  SPRKStepSetMethodName () “ARKODE_SPRK_MCLACHLAN_4_-
4’7

Use compensated summa- SPRKStepSetUseCompensated- false

tion Sums ()

int SPRKStepSetOrder (void *arkode_mem, int ord)

Specifies the order of accuracy for the SPRK integration method.
The allowed values are 1,2, 3,4, 5,6, 8, 10. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal SPRKStep memory block, it cannot be changed after
the first call to SPRKStepEvolve (), unless SPRKStepReInit () is called.

Parameters
* arkode_mem — pointer to the SPRKStep memory block.

* ord - requested order of accuracy.
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Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

Warning: This overrides any previously set method so it should not be used with SPRKStepSetMethod ()
or SPRKStepMethodByName ().

int SPRKStepSetMethod (void *arkode_mem, ARKodeSPRKTable sprk_table)
Specifies the SPRK method.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
e sprk_table — the SPRK method table.
Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

Note: No error checking is performed on the coefficients contained in the table to ensure its declared order of
accuracy.

int SPRKStepSetMethodName (void *arkode_mem, const char *method)
Specifies the SPRK method by its name.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
» method — the SPRK method name.
Return values
* ARK_SUCCESS — if successful
* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

int SPRKStepSetUseCompensatedSums (void *arkode_mem, sunbooleantype onoff)

Specifies if compensated summation (and the incremental form) should be used where applicable.

This increases the computational cost by 2 extra vector operations per stage and an additional 5 per time step. It
also requires one extra vector to be stored. However, it is signficantly more robust to roundoff error accumulation.

Parameters

* arkode_mem — pointer to the SPRKStep memory block.

» onoff — should compensated summation be used (1) or not (0)
Return values

e ARK_SUCCESS - if successful
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* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in §2.12.

Table 5.12: Rootfinding optional input functions

Optional input Function name Default
Direction of zero-crossings to monitor SPRKStepSetRootDirection() both
Disable inactive root warnings SPRKStepSetNoInactiveRootWarn() enabled

int SPRKStepSetRootDirection(void *arkode_mem, int *rootdir)

Specifies the direction of zero-crossings to be located and returned.
The default behavior is to monitor for both zero-crossing directions.
Parameters
» arkode_mem — pointer to the SPRKStep memory block.

e rootdir - state array of length nrtfn, the number of root functions g; (the value of nrifn
was supplied in the call to SPRKStepRootInit()). If rootdir[i] == O then crossing in
either direction for g; should be reported. A value of +1 or -1 indicates that the solver should
report only zero-crossings where g; is increasing or decreasing, respectively.

Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory is NULL
e ARK_ILL_INPUT - if an argument has an illegal value
int SPRKStepSetNoInactiveRootWarn(void *arkode_mem)

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

SPRKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more compo-
nents g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial time (i.e.,
g; is zero at the initial time and after the first step), SPRKStep will issue a warning which can be disabled with
this optional input function.

Parameters

* arkode_mem — pointer to the SPRKStep memory block.
Return values

e ARK_SUCCESS - if successful

e ARK_MEM_NULL - if the SPRKStep memory is NULL
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5.4.2.5 Interpolated output function

An optional function SPRKStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from SPRKStepEvolve(), as it provides interpolated values
either of y or of its derivatives. interpolated to any value of ¢ in the last internal step taken by SPRKStepEvolve().

int SPRKStepGetDky (void *arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time ¢, i.e., y(k) (t), for values of the independent variable
satisfying ¢t,, —h,, <t < t,,, with t,, as current internal time reached, and h,, is the last internal step size success-
fully used by the solver. A user may access the values t,, and h,, via the functions SPRKStepGetCurrentTime ()
and SPRKStepGetLastStep (), respectively.

This routine uses an interpolating polynomial of degree min(degree, 5), where degree is the argument provided to
SPRKStepSetInterpolantDegree (). The user may request k in the range {0...., min(degree, kmax)} where
kmax depends on the choice of interpolation module. For Hermite interpolants kmax = 5 and for Lagrange
interpolants kmax = 3.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* t — the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return values
* ARK_SUCCESS - if successful
* ARK_BAD_K - if k is not in the range {O,..., min(degree, kmax)}.
* ARK_BAD_T - if 7 is not in the interval [t,, — hy,, t,]
e ARK_BAD_DKY - if the dky vector was NULL
e ARK_MEM_NULL - if the SPRKStep memory is NULL

Note: Dense outputs may or may not conserve the Hamiltonian. Our testing has shown that Lagrange interpo-
lation typically performs well in this regard, while Hermite interpolation does not.

Warning: It is only legal to call this function after a successful return from SPRKStepEvolve().

5.4.2.6 Optional output functions

SPRKStep provides an extensive set of functions that can be used to obtain solver performance information. We orga-
nize these into groups:

1.
2.
3.

General SPRKStep output routines are in §5.4.2.6,
Output routines regarding root-finding results are in §5.4.2.6,

General usability routines (e.g. to print the current SPRKStep parameters, or output the current Butcher tables)
are in §5.4.2.6.

5.4. Using the SPRKStep time-stepping module 241



User Documentation for ARKODE, v5.6.0

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of various
methods inside SPRKStep. For example:

* The counters nsteps and nf_evals provide a rough measure of the overall cost of a given run, and can be compared
between runs with different solver options to suggest which set of options is the most efficient.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

Main solver optional output functions

Table 5.13: Main solver optional output functions

Optional output Function name

Cumulative number of internal steps

Step size used for the last successful step

Step size to be attempted on the next step
Current internal time reached by the solver
Current internal state reached by the solver
Single accessor to many statistics at once
Print all statistics

Name of constant associated with a return flag
No. of attempted steps

No. of calls to right-hand side functions

SPRKStepGetNumSteps ()
SPRKStepGetLastStep()
SPRKStepGetCurrentStep()
SPRKStepGetCurrentTime ()
SPRKStepGetCurrentState ()
SPRKStepGetStepStats()
SPRKStepPrintAllStats()
SPRKStepGetReturnFlagName ()
SPRKStepGetNumStepAttempts ()
SPRKStepGetNumRhsEvals ()

Current method table
Retrieve a pointer for user data

SPRKStepGetCurrentMethod()
SPRKStepGetUserData()

int SPRKStepGetNumSteps (void *arkode_mem, long int *nsteps)

Returns the cumulative number of internal steps taken by the solver (so far).
Parameters
 arkode_mem — pointer to the SPRKStep memory block.
* nsteps — number of steps taken in the solver.
Return values
» ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetLastStep (void *arkode_mem, realtype *hlast)
Returns the integration step size taken on the last successful internal step.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* hlast — step size taken on the last internal step.
Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory was NULL
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int SPRKStepGetCurrentStep (void *arkode_mem, realtype *hcur)

Returns the integration step size to be attempted on the next internal step.
Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* hcur - step size to be attempted on the next internal step.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetCurrentTime (void *arkode_mem, realtype *tcur)
Returns the current internal time reached by the solver.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* tcur - current internal time reached.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
e ycur - current internal solution
Return values
» ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL

Warning: Users should exercise extreme caution when using this function, as altering values of ycur may
lead to undesirable behavior, depending on the particular use case and on when this routine is called.

int SPRKStepGetStepStats(void *arkode_mem, long int *nsteps, realtype *hinused, realtype *hlast, realtype

*hcur, realtype *tcur)

Returns many of the most useful optional outputs in a single call.
Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* nsteps — number of steps taken in the solver.
* hinused - actual value of initial step size.
* hlast - step size taken on the last internal step.
* hcur - step size to be attempted on the next internal step.

e tcur — current internal time reached.
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Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory was NULL
int SPRKStepPrintAllStats (void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)

Outputs all of the integrator statistics.
Parameters
 arkode_mem — pointer to the SPRKStep memory block.
» outfile — pointer to output file.
 fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g.,
keyl,valuel,key2,value2,...

Return values
* ARK_SUCCESS - — if the output was successfully.
e ARK_MEM_NULL - — if the SPRKStep memory was NULL.
e ARK_ILL_INPUT - —if an invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

char *SPRKStepGetReturnFlagName (long int flag)
Returns the name of the SPRKStep constant corresponding to flag. See Appendix: ARKODE Constants.

Parameters
» flag - a return flag from an SPRKStep function.

Returns
The return value is a string containing the name of the corresponding constant.

int SPRKStepGetNumStepAttempts (void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* step_attempts — number of steps attempted by solver.
Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetNumRhsEvals (void *arkode_mem, long int *nf1, long int *nf2)
Returns the number of calls to the user’s right-hand side functions, f1 and f5 (so far).

Parameters

» arkode_mem — pointer to the SPRKStep memory block.
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» nfl — number of calls to the user’s fi (¢, p) function.

» nf2 — number of calls to the user’s f5(t, ¢) function.
Return values

» ARK_SUCCESS - if successful

e ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetCurrentMethod (void *arkode_mem, ARKodeSPRKTable *sprk_table)
Returns the SPRK method coefficient table currently in use by the solver.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
» sprk_table — pointer to the SPRK method table.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with SPRKStepSetUserData().

Parameters
* arkode_mem — pointer to the SPRKStep memory block.
» user_data — memory reference to a user data pointer
Return values
* ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the ARKStep memory was NULL

Rootfinding optional output functions

Table 5.14: Rootfinding optional output functions

Optional output Function name

Array showing roots found SPRKStepGetRootInfo()
No. of calls to user root function SPRKStepGetNumGEvals()

int SPRKStepGetRootInfo (void *arkode_mem, int *rootsfound)

Returns an array showing which functions were found to have a root.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

The user must allocate space for rootsfound prior to calling this function.
Parameters

» arkode_mem — pointer to the SPRKStep memory block.
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» rootsfound — array of length nrtfn with the indices of the user functions g; found to have
a root (the value of nr#fn was supplied in the call to SPRKStepRootInit()). Fori =10...
nrtfn-1, rootsfound[i] is nonzero if g; has a root, and 0 if not.

Return values
e ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL

int SPRKStepGetNumGEvals (void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* ngevals — number of calls made to g so far.
Return values
* ARK_SUCCESS — if successful
* ARK_MEM_NULL - if the SPRKStep memory was NULL

General usability functions

The following optional routine may be called by a user to inquire about existing solver parameters. While it would not
typically be called during the course of solving an initial value problem, it may be useful for users wishing to better
understand SPRKStep.

Table 5.15: General usability functions

Optional routine Function name
Output all SPRKStep solver parameters SPRKStepliriteParameters()

int SPRKStepWriteParameters (void *arkode_mem, FILE *fp)
Outputs all SPRKStep solver parameters to the provided file pointer.

The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

Parameters
 arkode_mem — pointer to the SPRKStep memory block.
 fp — pointer to use for printing the solver parameters.
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL
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5.4.2.7 SPRKStep re-initialization function

To reinitialize the SPRKStep module for the solution of a new problem, where a prior call to SPRKStepCreate ()
has been made, the user must call the function SPRKStepReInit (). The new problem must have the same size as
the previous one. This routine retains the current settings for all SPRKStep module options and performs the same
input checking and initializations that are done in SPRKStepCreate (), but it performs no memory allocation as it
assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration, and deletes any previously-set
tstop value specified via a call to SPRKStepSetStopTime (). Following a successful call to SPRKStepReInit (), call
SPRKStepEvolve () again for the solution of the new problem.

The use of SPRKStepReInit () requires that the number of Runge—Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order g is left unchanged.

One potential use of the SPRKStepReInit () functionis in the treating of jump discontinuities in the RHS function [87].
In lieu of including if statements within the RHS function to handle discontinuities, it may be more computationally
efficient to stop at each point of discontinuity (e.g., through use of tstop or the rootfinding feature) and restart the
integrator with a readjusted ODE model, using a call to this routine. We note that for the solution to retain temporal
accuracy, the RHS function should not incorporate the discontinuity.

int SPRKStepReInit (void *arkode_mem, ARKRhsFn f1, ARKRhsFn £2, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the SPRKStep time-stepper module.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.
If an error occurred, SPRKStepReInit () also sends an error message to the error handler function.
Parameters
* arkode_mem — pointer to the SPRKStep memory block.

» £1 — the name of the C function (of type ARKRhsFn()) defining f1(¢,q) = %{';’q)

» £2 — the name of the C function (of type ARKRhsFn()) defining f2(¢,p) = 8T8(;’p )

* t0 — the initial value of ¢.
* yO0 — the initial condition vector y(ty).
Return values
* ARK_SUCCESS — if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL
* ARK_MEM_FAIL - if a memory allocation failed
* ARK_ILL_INPUT - if an argument has an illegal value.

5.4.2.8 SPRKStep reset function

To reset the SPRKStep module to a particular state (¢, y(tr)) for the continued solution of a problem, where a prior call
to SPRKStepCreate () has been made, the user must call the function SPRKStepReset (). Like SPRKStepReInit ()
this routine retains the current settings for all SPRKStep module options and performs no memory allocations but,
unlike SPRKStepReInit (), this routine performs only a subset of the input checking and initializations that are done
in SPRKStepCreate (). In particular this routine retains all internal counter values. Like SPRKStepReInit (), a call
to SPRKStepReset () will delete any previously-set zstop value specified via a call to SPRKStepSetStopTime (). Fol-
lowing a successful call to SPRKStepReset (), call SPRKStepEvolve () again to continue solving the problem. By
default the next call to SPRKStepEvolve () will use the step size computed by SPRKStep prior to calling SPRKStep-
Reset().
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int SPRKStepReset (void *arkode_mem, realtype tR, N_Vector yR)

Resets the current SPRKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.
If an error occurred, SPRKStepReset () also sends an error message to the error handler function.
Parameters
» arkode_mem — pointer to the SPRKStep memory block.
* tR — the value of the independent variable t.
* yR — the value of the dependent variable vector y(tg).
Return values
* ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the SPRKStep memory was NULL
* ARK_MEM_FAIL - if a memory allocation failed
e ARK_ILL_INPUTL - if an argument has an illegal value.

Note: By default the next call to SPRKStepEvolve () will use the step size computed by SPRKStep prior to
calling SPRKStepReset ().

5.5 Using the MRIStep time-stepping module

This chapter is concerned with the use of the MRIStep time-stepping module for the solution of multirate initial value
problems (IVPs) of the form (2.10) in a C or C++ language setting. The following sections discuss the header files
and the layout of the user’s main program, and provide descriptions of the MRIStep user-callable functions and user-
supplied functions.

The example programs located in the source code examples/arkode folder, including those described in the compan-
ion document [70], may be helpful as templates for new codes.

MRIStep uses the input and output constants from the shared ARKODE infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in §14.

The relevant information on using MRIStep’s C and C++ interfaces is detailed in the following subsections.

5.5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the MRIStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUN-
NONLINSOL implementations used. For the steps that are not, refer to §8, §9, §10, and §11 for the specific name of
the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

2. Create the SUNDIALS context object

Call SUNContext_Create() to allocate the SUNContext object.
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3. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and N1ocal should be of type sunindextype.

4. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0® = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector by
making a call of the form

y® = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form
ydata = N_VGetArrayPointer_***(y0);
For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.
5. Create an inner stepper object to solve the fast (inner) IVP

» If using ARKStep as the fast (inner) integrator, create the ARKStep object with ARKStepCreate() and
configure the integrator as desired for evolving the fast time scale. See sections §5.2.1 and §5.2.2.8 for
details on configuring ARKStep.

Once the ARKStep object is setup, create an MRIStepInnerStepper object with ARKStepCreateMRIS-
tepInnerStepper().

* If supplying a user-defined fast (inner) integrator, create the MRIStepInnerStepper object as described
in section §5.5.4.

Note: When using ARKStep as a fast (inner) integrator it is the user’s responsibility to create, configure, and
attach the integrator to the MRIStep module. User-specified options regarding how this fast integration should
be performed (e.g., adaptive vs. fixed time step, explicit/implicit/ImEx partitioning, algebraic solvers, etc.) will
be respected during evolution of the fast time scale during MRIStep integration.

Due to the algorithms supported in MRIStep, the ARKStep module used for the fast time scale must be configured
with an identity mass matrix.

If a user_data pointer needs to be passed to user functions called by the fast (inner) integrator then it should be
attached here by calling ARKStepSetUserData (). This user_data pointer will only be passed to user-supplied
functions that are attached to the fast (inner) integrator. To supply a user_data pointer to user-supplied functions
called by the slow (outer) integrator the desired pointer should be attached by calling MRIStepSetUserData ()
after creating the MRIStep memory below. The user_data pointers attached to the inner and outer integrators
may be the same or different depending on what is required by the user code.

Specifying a rootfinding problem for the fast integration is not supported. Rootfinding problems should be created
and initialized with the slow integrator. See the steps below and MRIStepRootInit () for more details.
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6. Create an MRIStep object for the slow (outer) integration

Create the MRIStep object by calling MRIStepCreate (). One of the inputs to MRIStepCreate () is the MRIS-
tepInnerStepper object for solving the fast (inner) IVP created in the previous step.

Set the slow step size

Call MRIStepSetFixedStep() to specify the slow time step size.

Create and configure implicit solvers (as appropriate)

Specifically, if MRIStep is configured with an implicit slow right-hand side function in the prior step, then the
following steps are recommended:

1.

Specify integration tolerances

Call MRIStepSStolerances () or MRIStepSVtolerances () to specify either a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call MRIStepliFtolerances () to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See §5.5.2.2 for details.

Create nonlinear solver object

If a non-default nonlinear solver object is desired for implicit MRI stage solves (see §5.5.2.4), then that
nonlinear solver object must be created by using the appropriate functions defined by the particular SUN-
NONLINSOL implementation (e.g., NLS = SUNNonlinSol_***(...); where *** is the name of the
nonlinear solver (see §11 for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be cre-
ated using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in the sections §5.2.2.5
and §11.

Note: by default, MRIStep will use the Newton nonlinear solver (see section §11.3), so a custom nonlinear
solver object is only needed when using a different solver, or for the user to exercise additional controls
over the Newton solver.

. Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to MRIStep using the call (for details
see §5.5.2.4):

ier = MRIStepSetNonlinearSolver(...);

Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to MRIStep, otherwise the
optional inputs will be overridden by MRIStep defaults. See §11 for more information on optional inputs.

. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and if that linear solver
will be matrix-based, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a
call of the form
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10.

11.

12.

13.

14.

SUNMatrix A = SUNBandMatrix(...);

or similar for other matrix modules (see §9 for further information).
6. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), then the desired linear
solver object(s) must be created by using the appropriate functions defined by the particular SUNLINSOL
implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §10.
7. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in §10 for details.

8. Attach linear solver module

If a linear solver was created above for implicit MRI stage solves, initialize the ARKLS linear solver inter-
face by attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details
see §5.5.2.3):

ier = MRIStepSetLinearSolver(...);

Set optional inputs

Call MRIStepSet* functions to change any optional inputs that control the behavior of MRIStep from their
default values. See §5.5.2.7 for details.

Specify rootfinding problem

Optionally, call MRIStepRootInit () to initialize a rootfinding problem to be solved during the integration of
the ODE system. See §5.5.2.5 for general details, and §5.5.2.7 for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = MRIStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y® above) will
contain y(teu ). See §5.5.2.6 for details.

Get optional outputs

Call MRIStepGet* and/or ARKStepGet* functions to obtain optional output from the slow or fast integrators
respectively. See §5.5.2.9 and §5.2.2.10 for details.

Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy(y);

Free solver memory
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» If ARKStep was used as the fast (inner) IVP integrator, call NRIStepInnerStepper_Free() and ARK-
StepFree () to free the memory allocated for the fast (inner) integrator.

* If a user-defined fast (inner) integrator was supplied, free the integrator content and call MRIStepInner-
Stepper_Free() to free the MRIStepInnerStepper object.

e Call MRIStepFree() to free the memory allocated for the slow integration object.
15. Free linear solver and matrix memory (as appropriate)

Call SUNLinSolFree() and (possibly) SUNMatDestroy () to free any memory allocated for any
linear solver and/or matrix objects created above for either the fast or slow integrators.

16. Free nonlinear solver memory (as appropriate)

If a user-supplied SUNNonlinearSolver was provided to MRIStep, then call SUNNonlinSolFree() to free
any memory allocated for the nonlinear solver object created above.

17. Free the SUNContext object Call SUNContext_Free() to free the memory allocated for the SUNContext
object.

1. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.5.2 MRIStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the MRIStep time-
stepping module. Some of these are required; however, starting with §5.5.2.7, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKODE’s MRIStep module. In
any case, refer to the preceding section, §5.5.1, for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide their own error handler function (see §5.5.2.7 for details).

5.5.2.1 MRIStep initialization and deallocation functions

void *MRIStepCreate (ARKRhsFn fse, ARKRhsFn fsi, realtype t0, N_Vector y0, MRIStepInnerStepper stepper,
SUNContext sunctx)

This function allocates and initializes memory for a problem to be solved using the MRIStep time-stepping
module in ARKODE.

Arguments:

* fse—the name of the function (of type ARKRhsFn ()) defining the explicit slow portion of the right-hand
side function in §y = fE(t,y) + fL(t,y) + ¥ (t,v).

* fsi —the name of the function (of type ARKRhsFn ()) defining the implicit slow portion of the right-hand
side functionin 7 = fE(t,y) + fL(t,y) + fF(t,y).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(¢o).
e stepper — an MRIStepInnerStepper for integrating the fast time scale.

* sunctx —the SUNContext object (see §4.1)
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Return value:
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-facing MRIS-
tep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

Example usage:

/* fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

/* MRIStepInnerStepper to wrap the inner (fast) ARKStep object */
MRIStepInnerStepper stepper = NULL;

/% create an ARKStep object, setting fast (inner) right-hand side
functions and the initial condition */
inner_arkode_mem = ARKStepCreate(ffe, ffi, t0®, y0®, sunctx);

/* setup ARKStep */

/* create MRIStepInnerStepper wrapper for the ARKStep memory block */
flag = ARKStepCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);

/* create an MRIStep object, setting the slow (outer) right-hand side
functions and the initial condition */
outer_arkode_mem = MRIStepCreate(fse, fsi, t0®, y0, stepper, sunctx)

Example codes:
* examples/arkode/C_serial/ark_brusselator_mri.c
e examples/arkode/C_serial/ark_twowaycouple_mri.c
e examples/arkode/C_serial/ark_brusselator_1D_mri.c
e examples/arkode/C_serial/ark_onewaycouple_mri.c
e examples/arkode/C_serial/ark_reaction_diffusion_mri.c
e examples/arkode/C_serial/ark_kpr_mri.c

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

void MRIStepFree (void **arkode_mem)
This function frees the problem memory arkode_mem created by MRIStepCreate().

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

Return value: None
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5.5.2.2 MRIStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to MRISte-
pEvolve(); otherwise default values of reltol = le-4 and abstol = le-9 will be used, which may be entirely
incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of MRIStepSStol-
erances (), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of MRIStepSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error tests, which use a weighted RMS norm on all error-like vectors v:

| 1/2
lvllwrms = <N Z;(vi ewt,;)2> ;

where NN is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to MRIStepliFtoler-
ances().

int MRIStepSStolerances (void *arkode_mem, realtype reltol, realtype abstol)

This function specifies scalar relative and absolute tolerances.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_NO_MALLOC if the MRIStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int MRIStepSVtolerances (void *arkode_mem, realtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* reltol — scalar relative tolerance.

* abstol — vector containing the absolute tolerances for each solution component.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory was NULL
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* ARK_NO_MALLOC if the MRIStep memory was not allocated by the time-stepping module

* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int MRIStepWFtolerances (void *arkode_mem, ARKEwtFn efun)

This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* efun — the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_NO_MALLOC if the MRIStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

(D

2

3)

The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~% means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10715 for double-precision).

The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no sense
(and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs
to be set to that noise level. If the different components have different noise levels, then abstol should be a vector.
For example, see the example problem ark_robertson.c, and the discussion of it in the ARKODE Examples
Documentation [70]. In that problem, the three components vary between 0 and 1, and have different noise
levels; hence the atols vector therein. It is impossible to give any general advice on abstol values, because
the appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as
to what those noise levels are.

Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that accu-
mulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10 from
the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice for reltol is
1075, In any case, it is a good idea to do a few experiments with the tolerances to see how the computed solution
values vary as tolerances are reduced.
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Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

(1) The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by MRIStep, with magnitude comparable to abstol or less, is equivalent to zero as
far as the computation is concerned.

(3) The user’s right-hand side routine f! should never change a negative value in the solution vector y to a non-
negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the f! routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending value
should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for the
purposes of computing (¢, y).

5.5.2.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within MRIStep require the solution
of linear systems of the form

A (Zl(m)) sm+) — _ (zl(m))

where

I
AT —~J, J:ai.
dy

ARKODE’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix .J, the
Newton matrix A, and, when using direct solvers, the factorizations used throughout the solution process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations, and
only require the action of the matrix on a vector, Av. With most of these methods, preconditioning can be done on
the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver portions of §5.5.2.7 and §5.6.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P, (either of which could be the identity matrix), such that the product P; P, approximates the Newton matrix
A=1T1-—~J.

To specify a generic linear solver for MRIStep to use for the Newton systems, after the call to MRIStepCreate () but
before any calls to MRIStepEvolve (), the user’s program must create the appropriate SUNLinearSolver object and
call the function MRIStepSetLinearSolver(), as documented below. To create the SUNLinearSolver object, the
user may call one of the SUNDIALS-packaged SUNLinSol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);
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The current list of SUNDIALS-packaged SUNLinSol modules, and their constructor routines, may be found in chapter
§10. Alternately, a user-supplied SUNLinearSolver module may be created and used. Specific information on how
to create such user-provided modules may be found in §10.1.8.

Once this solver object has been constructed, the user should attach it to MRIStep via a call to MRIStepSetLinear-
Solver(). The first argument passed to this function is the MRIStep memory pointer returned by MRIStepCreate();
the second argument is the SUNLinearSolver object created above. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the ARKLS linear solver interface, linking it to the MRIStep integrator, and
allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int MRIStepSetLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)

This function specifies the SUNLinearSolver object that MRIStep should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

e LS — the SUNLinearSolver object to use.

* J —the template Jacobian SUNMatrix object to use (or NULL if not applicable).
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the MRIStep memory was NULL

* ARKLS_MEM_FAIL if there was a memory allocation failure

* ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

Notes: If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX type
in §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full sparsity
pattern of the Newton system matrices A = I — ~.J, even if J itself has zeros in nonzero locations of I. The
reasoning for this is that A is constructed in-place, on top of the user-specified values of J, so if the sparsity
pattern in J is insufficient to store A4 then it will need to be resized internally by MRIStep.

5.5.2.4 Nonlinear solver interface functions

When changing the nonlinear solver in MRIStep, after the call to MRIStepCreate () but before any calls to MRIS-
tepEvolve (), the user’s program must create the appropriate SUNNonlinSol object and call MRIStepSetNonlin-
earSolver(), as documented below. If any calls to MRIStepEvolve () have been made, then MRIStep will need
to be reinitialized by calling MRIStepReInit () to ensure that the nonlinear solver is initialized correctly before any
subsequent calls to MRIStepEvolve().

The first argument passed to the routine MRIStepSetNonlinearSolver () is the MRIStep memory pointer returned
by MRIStepCreate(); the second argument passed to this function is the desired SUNNonlinearSolver object to
use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to the
main MRIStep integrator.
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int MRIStepSetNonlinearSolver (void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that MRIStep should use for implicit stage solves.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* NLS —the SUNNonlinearSolver object to use.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
e ARK_MEM_FAIL if there was a memory allocation failure
* ARK_ILL_INPUT if MRIStep is incompatible with the provided NLS input object.

Notes: MRIStep will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces
that module with the supplied NLS object.

5.5.2.5 Rootfinding initialization function

As described in the section §2.12, while solving the IVP, ARKODE’s time-stepping modules have the capability to
find the roots of a set of user-defined functions. In the MRIStep module root finding is performed between slow
solution time steps only (i.e., it is not performed within the sub-stepping a fast time scales). To activate the root-finding
algorithm, call the following function. This is normally called only once, prior to the first call to MRIStepEvolve(),
but if the rootfinding problem is to be changed during the solution, MRIStepRootInit () can also be called prior to a
continuation call to MRIStepEvolve().

int MRIStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
MRIStepCreate(), and before MRIStepEvolve().

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nrtfn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots are
sought.

Return value:
e ARK_SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL
e ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
MRIStep’s rootfinding module, call MRIStepRootInit with nritfn = 0.

Similarly, if a new IVP is to be solved with a call to MRIStepReInit (), where the new IVP has no rootfinding
problem but the prior one did, then call MRIStepRootInit with nrtfn = 0.

Rootfinding is only supported for the slow (outer) integrator and should not be actived for the fast (inner) inte-
grator.
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5.5.2.6 MRIStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where MRIStep is to return a solution. These modes are modified if the user has set a
stop time (with a call to the optional input function MRIStepSetStopTime ()) or has requested rootfinding.

int MRIStepEvolve (void *arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)

Integrates the ODE over an interval in £.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
e tret — the time corresponding to yout (output).
* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < tout < t,, for forward integration,
or t, < tout < t,_1 for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (as described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,—1 — ¥y, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout.

Return value:
e ARK SUCCESS if successful.

e ARK_ROOT_RETURN if MRIStepEvolve () succeeded, and found one or more roots. If the number
of root functions, nrifn, is greater than 1, call MRIStepGetRootInfo () to see which g; were found to
have a root at (*tret).

* ARK_TSTOP_RETURN if MRIStepEvolve () succeeded and returned at zstop.
* ARK_MEM_NULL if the arkode_mem argument was NULL.
e ARK_NO_MALLOC if arkode_mem was not allocated.

* ARK_ILL_INPUT if one of the inputs to MRIStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling ARKStepCreate()) failed
to set the linear solver-specific Isolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point ¢ and also very near ¢.

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach fout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_CONV_FAILURE if convergence test failures occurred too many times (ark_maxncf) during one
internal time step.

e ARK_LINIT_FAIL if the linear solver’s initialization function failed.

ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.
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ARK _LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

ARK_VECTOROP_ERR a vector operation error occurred.

ARK_INNERSTEP_FAILED if the inner stepper returned with an unrecoverable error. The value re-
turned from the inner stepper can be obtained with MRIStepGetLastInnerStepFlag().

ARK_INVALID_TABLE if an invalid coupling table was provided.

Notes:
The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
MRIStepCreate().

In ARK_ONE_STEP mode, fout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
MRIStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to MRIStepSetStopTime () before the call to MRIStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from MRIStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for zstop is disabled (and can be re-enabled only though a new call to MRIStepSetStopTime()).

On any error return in which one or more internal steps were taken by MRIStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

5.5.2.7 Optional input functions

There are numerous optional input parameters that control the behavior of MRIStep, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of MRIStep they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:

* General MRIStep options (§5.5.2.7),

IVP method solver options (§5.5.2.7),

* Implicit stage solver options (§5.5.2.7),

* Linear solver interface options (§5.5.2.7), and
* Rootfinding options (§5.5.2.7).

For the most casual use of MRIStep, relying on the default set of solver parameters, the reader can skip to the section
on user-supplied functions, §5.6.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
call to an MRIStepSet*** function can generally be made from the user’s calling program at any time and, if successful,
takes effect immediately. MRIStepSet*** functions that cannot be called at any time note this in the “Notes:” section

of the function documentation.
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Optional inputs for MRIStep

Table 5.16: Optional inputs for MRIStep

Optional input Function name Default
Return MRIStep solver parameters to their defaults  MRIStepSetDefaults() internal
Set dense output interpolation type MRIStepSetInterpolantType() ARK_INTERP_HER-

MITE
Set dense output polynomial degree MRIStepSetInterpolantDe- 5

gree()
Supply a pointer to a diagnostics output file MRIStepSetDiagnostics() NULL
Supply a pointer to an error output file MRIStepSetErrFile() stderr
Supply a custom error handler function MRIStepSetErrHandlerFn() internal fn
Run with fixed-step sizes MRIStepSetFixedStep() required
Maximum no. of warnings for t,, + h = ¢, MRIStepSetMaxHnilWarns() 10
Maximum no. of internal steps before rout MRIStepSetMaxNumSteps() 500
Set a value for ¢4, MRIStepSetStopTime () undefined
Interpolate at ¢4, MRIStepSetInterpolateStop- SUNFALSE
Time()

Disable the stop time MRIStepClearStopTime() N/A
Supply a pointer for user data MRIStepSetUserData() NULL
Supply a function to be called prior to the inner in- MRIStepSetPreInnerFn() NULL
tegration
Supply a function to be called after the inner integra- MRIStepSetPostInnerFn() NULL
tion

int MRIStepSetDefaults (void *arkode_mem)

Resets all optional input parameters to MRIStep’s original default values.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: This function does not change problem-defining function pointers fs and ff or the user_data pointer. It
also does not affect any data structures or options related to root-finding (those can be reset using MRIStepRoo-
tInit()).

int MRIStepSetInterpolantType (void *arkode_mem, int itype)

Specifies use of the Lagrange or Hermite interpolation modules (used for dense output — interpolation of solution
output values and implicit method predictors).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* itype — requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)

Return value:
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e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_MEM_FAIL if the interpolation module cannot be allocated

* ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already been
initialized

Notes: The Hermite interpolation module is described in §2.2.1, and the Lagrange interpolation module is de-
scribed in §2.2.2.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument. Thus any previous calls to MRIStepSetInterpolantDegree () will be nullified.

This routine must be called after the call to MRIStepCreate(). After the first call to MRIStepEvolve() the
interpolation type may not be changed without first calling MRIStepReInit ().

If this routine is not called, the Hermite interpolation module will be used.

int MRIStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* degree — requested polynomial degree.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory or interpolation module are NULL
e ARK _INTERP_FAIL if this is called after MRIStepEvolve ()

* ARK_ILL_INPUT if an argument has an illegal value or the interpolation module has already been initial-
ized
Notes: Allowed values are between 0 and 5.

This routine should be called after MRIStepCreate () and before MRIStepEvolve (). After the first call to
MRIStepEvolve () the interpolation degree may not be changed without first calling MRIStepReInit().

If a user calls both this routine and MRIStepSetInterpolantType (), then MRIStepSetInterpolantType ()
must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on which
it is based, the actual polynomial degree that is used by MRIStep will be the minimum of ¢ — 1 and the input
degree, for ¢ > 1 where q is the order of accuracy for the time integration method.

Changed in version 5.5.1: When ¢ = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.

int MRIStepSetDenseOrder (void *arkode_mem, int dord)

This function is deprecated, and will be removed in a future release. Users should transition to calling MRIS-
tepSetInterpolantDegree () instead.

int MRIStepSetDiagnostics (void *arkode_mem, FILE *diagfp)

Specifies the file pointer for a diagnostics file where all MRIStep step adaptivity and solver information is written.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.
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* diagfp — pointer to the diagnostics output file.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename () instead.
int MRIStepSetErrFile(void *arkode_mem, FILE *errfp)

Specifies a pointer to the file where all MRIStep warning and error messages will be written if the default internal
error handling function is used.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e errfp — pointer to the output file.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the MRIStep memory
pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int MRIStepSetErrHandlerFn(void *arkode_mem, ARKErrHandlerFn ehfun, void *eh_data)

Specifies the optional user-defined function to be used in handling error messages.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* ehfun — name of user-supplied error handler function.

* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the MRIStep solver memory is NULL will always be directed to stderr.
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int MRIStepSetFixedStep (void *arkode_mem, realtype hs)

Set the slow step size used within MRIStep for the following internal step(s).
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* hs — value of the outer (slow) step size.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes:

The step sizes used by the inner (fast) stepper may be controlled through calling the appropriate “Set” routines
on the inner integrator.

int MRIStepSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢t + h = ¢ on the next internal step,
before MRIStep will instead return with an error.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

 mxhnil — maximum allowed number of warning messages (> 0).
Return value:

¢ ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int MRIStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before MRIStep will return with an error.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
¢ ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: Passing mxsteps = 0 results in MRIStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).
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int MRIStepSetStopTime (void *arkode_mem, realtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

e tstop — stopping time for the integrator.
Return value:

¢ ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes:

The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reen-
abled only though a new call to MRIStepSetStopTime()).

A stop time not reached before a call to MRIStepReInit () or MRIStepReset () will remain active
but can be disabled by calling MRIStepClearStopTime ().

int MRIStepSetInterpolateStopTime (void *arkode_mem, booleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* interp — flag indicating to use interpolation (1) or copy (0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
New in version 5.6.0.

int MRIStepClearStopTime (void *arkode_mem)
Disables the stop time set with MRIStepSetStopTime ().

Arguments:

* arkode_mem — pointer to the MRIStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

Notes:
The stop time can be reenabled though a new call to MRIStepSetStopTime ().

New in version 5.5.1.

int MRIStepSetUserData (void *arkode_mem, void *user_data)

Specifies the user data block user_data for the outer integrator and attaches it to the main MRIStep memory
block.

Arguments:
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* arkode_mem — pointer to the MRIStep memory block.
* user_data — pointer to the user data.
Return value:
¢ ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions called by the outer integrator
for which it is an argument; otherwise NULL is passed.

To attach a user data block to the inner integrator call the appropriate SetUserData function for the inner integrator
memory structure (e.g., ARKStepSetUserData () if the inner stepper is ARKStep). This pointer may be the same
as or different from the pointer attached to the outer integrator depending on what is required by the user code.

int MRIStepSetPreInnerFn(void *arkode_mem, MRIStepPrelnnerFn prefn)

Specifies the function called before each inner integration.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* prefn—the name of the C function (of type MRIStepPreInnerFn())defining pre inner integration function.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

int MRIStepSetPostInnerFn(void *arkode_mem, MRIStepPostinnerFn postfn)
Specifies the function called after each inner integration.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* postfn — the name of the C function (of type MRIStepPostInnerFn()) defining post inner integration
function.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL

Optional inputs for IVP method selection

Table 5.17: Optional inputs for IVP method selection

Optional input Function name Default
Select the default MRI method of a given order MRIStepSetOrder() 3
Set MRI coupling coefficients MRIStepSetCoupling() internal

266 Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

int MRIStepSetOrder (void *arkode_mem, int ord)
Select the default MRI method of a given order.

The default order is 3. An order less than 3 or greater than 4 will result in using the default.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
¢ ord — the method order.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
int MRIStepSetCoupling(void *arkode_mem, MRIStepCoupling C)

Specifies a customized set of slow-to-fast coupling coefficients for the MRI method.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
» C — the table of coupling coefficients for the MRI method.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes:

For a description of the MRIStepCoupling type and related functions for creating Butcher tables see §5.5.3.

Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by MRIStep, including how each of the parameters
below is used within the code, is provided in §2.11.1.

Optional input Function name Default
Specify linearly implicit £/ MRIStepSetLinear() SUNFALSE
Specify nonlinearly implicit f! MRIStepSetNonlinear() SUNTRUE
Implicit predictor method MRIStepSetPredictorMethod() 0
Maximum number of nonlinear iterations MRIStepSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test MRIStepSetNonlinConvCoef() 0.1
Nonlinear convergence rate constant MRIStepSetNonlinCRDown () 0.3
Nonlinear residual divergence ratio MRIStepSetNonlinRDiv() 2.3
User-provided implicit stage predictor MRIStepSetStagePredictFn() NULL
RHS function for nonlinear system evaluations MRIStepSetNIsRhsFn() NULL

Specify if f! is deduced after a nonlinear solve ~MRIStepSetDeducelImplicitRhs() SUNFALSE

int MRIStepSetLinear (void *arkode_mem, int timedepend)
Specifies that the implicit slow right-hand side function, f(t,y) is linear in y.

Arguments:

5.5. Using the MRIStep time-stepping module 267



User Documentation for ARKODE, v5.6.0

* arkode_mem — pointer to the MRIStep memory block.

o timedepend — flag denoting whether the Jacobian of f!(t,y) is time-dependent (1) or not (0). Al-
ternately, when using a matrix-free iterative linear solver this flag denotes time dependence of the
preconditioner.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls MRIStepSetDelt-
aGammalMax () to enforce Jacobian recomputation when the step size ratio changes by more than 100 times the
unit roundoff (since nonlinear convergence is not tested). Only applicable when used in combination with the
modified or inexact Newton iteration (not the fixed-point solver).

The only SUNDIALS-provided SUNNonlinearSolver module that is compatible with the MRIStepSetLinear ()
option is the Newton solver.

int MRIStepSetNonlinear (void *arkode_mem)
Specifies that the implicit slow right-hand side function, f(t,y) is nonlinear in y.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of MRIStep, so the function is primarily useful to undo a previous call to
MRIStepSetLinear(). Calls MRIStepSetDeltaGammaMax () to reset the step size ratio threshold to the default
value.

int MRIStepSetPredictorMethod (void *arkode_mem, int method)

Specifies the method to use for predicting implicit solutions.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
¢ method — method choice (0 < method < 4):
— 0is the trivial predictor,

— 1 is the maximum order (dense output) predictor,

2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step. deprecated

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
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* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 0. If method is set to an undefined value, this default predictor will be used.
The “bootstrap” predictor (option 4 above) has been deprecated, and will be removed from a future release.

int MRIStepSetMaxNonlinIters (void *arkode_mem, int maxcor)

Specifies the maximum number of nonlinear solver iterations permitted per slow MRI stage within each time
step.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* maxcor — maximum allowed solver iterations per stage (> 0).
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value or if the SUNNONLINSOL module is NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag
Notes: The default value is 3; set maxcor < 0 to specify this default.

int MRIStepSetNonlinConvCoef (void *arkode_mem, realtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* nilscoef — coefficient in nonlinear solver convergence test (> 0.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 0.1; set niscoef < 0 to specify this default.

int MRIStepSetNonlinCRDown (void *arkode_mem, realtype crdown)

Specifies the constant used in estimating the nonlinear solver convergence rate.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* crdown — nonlinear convergence rate estimation constant (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

5.5. Using the MRIStep time-stepping module 269



User Documentation for ARKODE, v5.6.0

int MRIStepSetNonlinRDiv (void *arkode_mem, realtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* rdiv — tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int MRIStepSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)

Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* PredictStage — name of user-supplied predictor function. If NULL, then any previously-provided stage
prediction function will be disabled.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL
Notes: See §5.6.7 for more information on this user-supplied routine.

int MRIStepSetNlsRhsFn(void *arkode_mem, ARKRhsFn nls_fs)

Specifies an alternative implicit slow right-hand side function for evaluating f(t,y) within nonlinear system
function evaluations.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* nis_fs — the alternative C function for computing the right-hand side function f(¢, ) in the ODE.
Return value:

e ARK _SUCCESS if successful.

* ARK_MEM_NULL if the MRIStep memory was NULL.

Notes: The default is to use the implicit slow right-hand side function provided to MRIStepCreate () in non-
linear system functions. If the input implicit slow right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after MRIStepSetNonlinearSolver().

int MRIStepSetDeduceImplicitRhs(void *arkode_mem, sunbooleantype deduce)

Specifies if implicit stage derivatives are deduced without evaluating f. See §2.11.1 for more details.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.
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* deduce —If SUNFALSE (default), the stage derivative is obtained by evaluating f! with the stage solution
returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced without an additional
evaluation of f7.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL

New in version 5.2.0.

Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to MRIStep is provided in §2.11.2. We group
the user-callable routines into four categories: general routines concerning the update frequency for matrices and/or
preconditioners, optional inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and op-
tional inputs for iterative linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive,
whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLS linear solver interface

As discussed in §2.11.2.3, ARKODE strives to reuse matrix and preconditioner data for as many solves as possible to

amortize the high costs of matrix construction and factorization. To that end, MRIStep provides user-callable routines

to modify this behavior. Recall that the Newton system matrices that arise within an implicit stage solve are A(t, z) ~
afl(t,2)

I —~J(t, z), where the implicit right-hand side function has Jacobian matrix J(t, z) = “—5=.

The matrix or preconditioner for A can only be updated within a call to the linear solver ‘setup’ routine. In general,
the frequency with which the linear solver setup routine is called may be controlled with the msbp argument to MRIS-
tepSetLSetupFrequency (). When this occurs, the validity of A for successive time steps intimately depends on
whether the corresponding v and J inputs remain valid.

At each call to the linear solver setup routine the decision to update 4 with a new value of v, and to reuse or reevaluate
Jacobian information, depends on several factors including:

* the success or failure of previous solve attempts,

* the success or failure of the previous time step attempts,

* the change in 7 from the value used when constructing .4, and

* the number of steps since Jacobian information was last evaluated.

The frequency with which to update Jacobian information can be controlled with the msbj argument to MRIStepSet-
JacEvalFrequency (). We note that this is only checked within calls to the linear solver setup routine, so values msbj
< msbp do not make sense. For linear-solvers with user-supplied preconditioning the above factors are used to determine
whether to recommend updating the Jacobian information in the preconditioner (i.e., whether to set jok to SUNFALSE
in calling the user-supplied ARKLsPrecSetupFn()). For matrix-based linear solvers these factors determine whether
the matrix J(¢,y) = %(yt’y) should be updated (either with an internal finite difference approximation or a call to the
user-supplied ARKLsJacFn); if not then the previous value is reused and the system matrix A(¢,y) =~ I — ~vJ(¢,y) is
recomputed using the current ~y value.
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Optional input Function name Default
Max change in step signaling new J MRIStepSetDeltaGammaMax () 0.2
Linear solver setup frequency MRIStepSetLSetupFrequency() 20

Jacobian / preconditioner update frequency MRIStepSetJacEvalFrequency() 51

int MRIStepSetDeltaGammaMax (void *arkode_mem, realtype dgmax)

Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* dgmax — tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int MRIStepSetLSetupFrequency (void *arkode_mem, int msbp)

Specifies the frequency of calls to the linear solver setup routine.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
» msbp — the linear solver setup frequency.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL

Notes: Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means
the setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp is O, the default value of 20 will be used. A negative value forces a linear solver step at each
implicit stage.

int MRIStepSetJacEvalFrequency (void *arkode_mem, long int msbj)
Specifies the frequency for recomputing the Jacobian or recommending a preconditioner update.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
» msbj — the Jacobian re-computation or preconditioner update frequency.
Return value:
* ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the MRIStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
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Notes: The Jacobian update frequency is only checked within calls to the linear solver setup routine, as such
values of msbj < msbp will result in recomputing the Jacobian every msbp steps. See MRIStepSetLSetupFre-
quency () for setting the linear solver setup frequency msbp.

Passing a value msbj < 0 indicates to use the default value of 50.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function MRIStepSetJacFn() DQ
Linear system function MRIStepSetLinSysFn() internal

Enable or disable linear solution scaling MRIStepSetLinearSolutionScaling() on

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix J (¢, y) or the linear system I —~.J. The function to evaluate the Jacobian must be of type
ARKLsJacFn(). The user can supply a custom Jacobian function, or if using a dense or banded J can use the default
internal difference quotient approximation that comes with the ARKLS interface. At present, we do not supply a cor-
responding routine to approximate Jacobian entries in sparse matrices J. To specify a user-supplied Jacobian function
jac, MRIStep provides the function MRIStepSetJacFn(). Alternatively, a function of type ARKLsLinSysFn() can
be provided to evaluate the matrix I — ~J. By default, ARKLS uses an internal linear system function leveraging
the SUNMATRIX API to form the matrix I — ~y.J. To specify a user-supplied linear system function linsys, MRIStep
provides the function MRIStepSetLinSysFn(). In either case the matrix information will be updated infrequently to
reduce matrix construction and, with direct solvers, factorization costs. As a result the value of 7 may not be current
and a scaling factor is applied to the solution of the linear system to account for lagged value of y. See §10.2.1 for more
details. The function MRIStepSetLinearSolutionScaling() can be used to disable this scaling when necessary,
e.g., when providing a custom linear solver that updates the matrix using the current  as part of the solve.

The ARKLS interface passes the user data pointer to the Jacobian and linear system functions. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied Jacobian
or linear system functions, without using global data in the program. The user data pointer may be specified through
MRIStepSetUserData().

int MRIStepSetJacFn(void *arkode_mem, ARKLsJacFn jac)

Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* jac —name of user-supplied Jacobian approximation function.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the MRIStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call to
MRIStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for dense and band matrices. If NULL is passed
in for jac, this default is used. An error will occur if no jac is supplied when using other matrix types.
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The function type ARKLsJacFn() is described in §5.6.

int MRIStepSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)

Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* [insys — name of user-supplied linear system approximation function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the MRIStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call to
MRIStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system I — ~J. If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.6.

int MRIStepSetLinearSolutionScaling(void *arkode_mem, booleantype onoff)

Enables or disables scaling the linear system solution to account for a change in 7y in the linear system. For more
details see §10.2.1.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* onoff — flag to enable (SUNTRUE) or disable (SUNFALSE) scaling
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the MRIStep memory was NULL

e ARKLS_ILL_INPUT if the attached linear solver is not matrix-based

Notes: Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default

Jwu functions (jtimes and jtsetup) MRIStepSetJacTimes () DQ, none
Jv DQ rhs function (jtimesRhsFn) MRIStepSetJacTimesRhsFn() fs

As described in §2.11.2, when solving the Newton linear systems with matrix-free methods, the ARKLS interface
requires a jtimes function to compute an approximation to the product between the Jacobian matrix J (¢, y) and a vector
v. The user can supply a custom Jacobian-times-vector approximation function, or use the default internal difference
quotient function that comes with the ARKLS interface.

A user-defined Jacobian-vector function must be of type ARKLsJacTimesVecFn and can be specified through a call to
MRIStepSetJacTimes () (see §5.6 for specification details). As with the user-supplied preconditioner functions, the
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evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done in
the optional user-supplied function of type ARKLsJacTimesSetupFn (see §5.6 for specification details). As with the
preconditioner functions, a pointer to the user-defined data structure, user_data, specified through MRIStepSetUser-
Data() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and product functions each time
they are called.

int MRIStepSetJacTimes (void *arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJacTimesVecFn jtimes)

Specifies the Jacobian-times-vector setup and product functions.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* jtsetup — user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.
e jtimes — user-defined Jacobian-vector product function.
Return value:
* ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the MRIStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the SUN-
LinearSolver object used by the ARKLS interface.

Notes: The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.6.

When using the internal difference quotient the user may optionally supply an alternative implicit right-hand side
function for use in the Jacobian-vector product approximation by calling MRIStepSetJacTimesRhsFn(). The alter-
native implicit right-hand side function should compute a suitable (and differentiable) approximation to the £ function
provided to MRIStepCreate(). For example, as done in [34], the alternative function may use lagged values when
evaluating a nonlinearity in f! to avoid differencing a potentially non-differentiable factor.

int MRIStepSetJacTimesRhsFn(void *arkode_mem, ARKRhsFn jtimesRhsFn)

Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

e jtimesRhsFn — the name of the C function (of type ARKRhsFn()) defining the alternative right-hand
side function.

Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the MRIStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.
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Notes: The default is to use the implicit right-hand side function provided to MRIStepCreate () in the internal
difference quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions MRIStepSetPreconditioner() NULL, NULL
Newton linear and nonlinear tolerance ratio MRIStepSetEpsLin() 0.05
Newton linear solve tolerance conversion factor MRIStepSetLSNormFactor () vector length

As described in §2.11.2, when using an iterative linear solver the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve, that are supplied to
MRIStep using the function MRIStepSetPreconditioner (). The psetup function supplied to these routines should
handle evaluation and preprocessing of any Jacobian data needed by the user’s preconditioner solve function, psolve.
The user data pointer received through MRIStepSetUserData() (or a pointer to NULL if user data was not specified)
is passed to the psetup and psolve functions. This allows the user to create an arbitrary structure with relevant problem
data and access it during the execution of the user-supplied preconditioner functions without using global data in the
program.

Also, as described in §2.11.3.2, the ARKLS interface requires that iterative linear solvers stop when the norm of the
preconditioned residual satisfies

€L €
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where the default e, = 0.05, which may be modified by the user through the MRIStepSetEpsLin() function.

int MRIStepSetPreconditioner (void *arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrecSolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is needed.
* psolve — user-defined preconditioner solve function.
Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the MRIStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

* ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes: The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.6.
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int MRIStepSetEpsLin(void *arkode_mem, realtype eplifac)

Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the linear
iteration.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* eplifac — linear convergence safety factor.
Return value:
* ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the MRIStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.
Notes: Passing a value eplifac < 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

int MRIStepSetLSNormFactor (void *arkode_mem, realtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac * tol_WRNS.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nrmfac — the norm conversion factor. If nrmfac is:
> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac
VDotProd(v,v)) where all the entries of v are one.

sqrt (N_-

Return value:
e ARK _SUCCESS if successful.
* ARK_MEM_NULL if the MRIStep memory was NULL.

Notes: This function must be called after the ARKLS system solver interface has been initialized through a call
to MRIStepSetLinearSolver().

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section §2.12.

Optional input Function name Default
Direction of zero-crossings to monitor MRIStepSetRootDirection() both
Disable inactive root warnings MRIStepSetNoInactiveRootWarn() enabled
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int MRIStepSetRootDirection(void *arkode_mem, int *rootdir)

Specifies the direction of zero-crossings to be located and returned.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* rootdir — state array of length nrifn, the number of root functions g; (the value of nrtfn was supplied
in the call to MRIStepRootInit()). If rootdir[i] == O then crossing in either direction for g;
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int MRIStepSetNoInactiveRootWarn(void *arkode_mem)

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

Notes: MRIStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), MRIStep will issue a warning which can be disabled
with this optional input function.

5.5.2.8 Interpolated output function

An optional function MRIStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from MRIStepEvolve(), as it provides interpolated values
either of y or of its derivatives (up to the 3rd derivative) interpolated to any value of ¢ in the last internal step taken by
MRIStepEvolve(). Internally, this “dense output” or “continuous extension” algorithm is identical to the algorithm
used for the maximum order implicit predictors, described in §2.11.5.2, except that derivatives of the polynomial model
may be evaluated upon request.

int MRIStepGetDky (void *arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time 7, i.e. y*)(¢), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to MRIStepSetInterpolantDegree (). The user may request k in the range
{0,..., min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* t —the value of the independent variable at which the derivative is to be evaluated.
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* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
¢ ARK SUCCESS if successful
* ARK_BAD_K if k is not in the range {0.,..., min(degree, kmax)}.
* ARK_BAD_T if t is not in the interval [t,, — hy, t5]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the MRIStep memory is NULL
Notes: It is only legal to call this function after a successful return from MRIStepEvolve().

A user may access the values ¢,, and h,, via the functions MRIStepGetCurrentTime () and MRIStepGetLast-
Step (), respectively.

5.5.2.9 Optional output functions

MRIStep provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1.

5.

General MRIStep output routines are in §5.5.2.9,

2. MRIStep implicit solver output routines are in §5.5.2.9,
3.
4

Linear solver output routines are in §5.5.2.9 and

. General usability routines (e.g. to print the current MRIStep parameters, or output the current coupling table)

are in §5.5.2.9.

Output routines regarding root-finding results are in §5.5.2.9,

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of various
methods inside MRIStep. For example:

* The number of steps and right-hand side evaluations at both the slow and fast time scales provide a rough measure

of the overall cost of a given run, and can be compared between runs with different solver options to suggest which
set of options is the most efficient.

The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each implicit stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for
a Newton solver on a general problem range from 1.1 to 1.8.

When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the ratio
nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian or pre-
conditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-vector product
routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is inaccurate.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.
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Main solver optional output functions

Table 5.18: Main solver optional output functions

Optional output

Size of MRIStep real and integer workspaces

Cumulative number of internal steps

Step size used for the last successful step
Current internal time reached by the solver
Current internal solution reached by the solver

Current ~ value used by the solver
Error weight vector for state variables
Suggested factor for tolerance scaling
Print all statistics

Name of constant associated with a return flag

No. of calls to the f¥ and f!

No. of failed steps due to a nonlinear solver failure

Current MRI coupling tables
Last inner stepper return value
Retrieve a pointer for user data

Function name
MRIStepGetWorkSpace()
MRIStepGetNumSteps ()
MRIStepGetLastStep()
MRIStepGetCurrentTime ()
MRIStepGetCurrentState()
MRIStepGetCurrentGamma ()
MRIStepGetErriWeights()
MRIStepGetTolScaleFactor()
MRIStepPrintAllStats()
MRIStepGetReturnFlagName ()
MRIStepGetNumRhsEvals()
MRIStepGetNumStepSolveFails()
MRIStepGetCurrentCoupling()
MRIStepGetLastInnerStepFlag()
MRIStepGetUserData()

int MRIStepGetWorkSpace (void *arkode_mem, long int *lenrw, long int *leniw)

Returns the MRIStep real and integer workspace sizes.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e lenrw — the number of realtype values in the MRIStep workspace.
¢ leniw — the number of integer values in the MRIStep workspace.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetNumSteps (void *arkode_mem, long int *nssteps, long int *nfsteps)

Returns the cumulative number of slow and fast internal steps taken by the solver (so far).
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* nssteps — number of slow steps taken in the solver.

* nfsteps — number of fast steps taken in the solver.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetLastStep (void *arkode_mem, realtype *hlast)

Returns the integration step size taken on the last successful internal step.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

280 Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

* hlast — step size taken on the last internal step.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentTime (void *arkode_mem, realtype *tcur)

Returns the current internal time reached by the solver.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e fcur — current internal time reached.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentState (void *arkode_mem, N_Vector *ycur)

Returns the current internal solution reached by the solver.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* ycur — current internal solution.
Return value:
¢ ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

Notes: Users should exercise extreme caution when using this function, as altering values of ycur may lead to
undesirable behavior, depending on the particular use case and on when this routine is called.

int MRIStepGetCurrentGamma (void *arkode_mem, realtype *gamma)
Returns the current internal value of y used in the implicit solver Newton matrix (see equation (2.30)).

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* gamma — current step size scaling factor in the Newton system.
Return value:

e ARK_SUCCESS if successful

e ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetTolScaleFactor (void *arkode_mem, realtype *tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* tolsfac — suggested scaling factor for user-supplied tolerances.

Return value:
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e ARK SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetErrWeights (void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* eweight — solution error weights at the current time.
Return value:
¢ ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
Notes: The user must allocate space for eweight, that will be filled in by this function.

int MRIStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* outfile — pointer to output file.
e fimt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., key1,
valuel,key2,value2,...

Return value:
* ARK_SUCCESS - if the output was successfully.
e CV_MEM_NULL - if the MRIStep memory was NULL.
e CV_ILL_INPUT - if an invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 5.2.0.

char *MRIStepGetReturnFlagName (long int flag)
Returns the name of the MRIStep constant corresponding to flag. See Appendix: ARKODE Constants.

Arguments:
* flag — a return flag from an MRIStep function.
Return value: The return value is a string containing the name of the corresponding constant.

int MRIStepGetNumRhsEvals (void *arkode_mem, long int *nfse_evals, long int *nfsi_evals)

Returns the number of calls to the user’s outer (slow) right-hand side functions, f E and f I 5o far.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.
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* nfse_evals — number of calls to the user’s f¥(t,y) function.

* nfsi_evals — number of calls to the user’s f(¢,y) function.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetNumStepSolveFails (void *arkode_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure (so far).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* ncnf — number of step failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentCoupling (void *arkode_mem, MRIStepCoupling *C)
Returns the MRI coupling table currently in use by the solver.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e C - pointer to slow-to-fast MRI coupling structure.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The MRIStepCoupling data structure is defined in the header file arkode/arkode_mristep.h. It is
defined as a pointer to the following C structure:

struct MRIStepCouplingMem {

int nmat; /* number of MRI coupling matrices */
int stages; /* size of coupling matrices (stages * stages) */
int q; /* method order of accuracy %/
int p; /* embedding order of accuracy %/
realtype ***G; /* coupling matrices [nmat][stages][stages] */
realtype *c; /* abscissae %/

B
typedef MRIStepCouplingMem *MRIStepCoupling;
For more details see §5.5.3.

int MRIStepGetLastInnerStepFlag(void *arkode_mem, int *flag)

Returns the last return value from the inner stepper.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* flag — inner stepper return value.
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Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with MRIStepSetUserData().

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* user_data — memory reference to a user data pointer
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

New in version 5.3.0.

Implicit solver optional output functions

Table 5.19: Implicit solver optional output functions

Optional output Function name

No. of calls to linear solver setup function MRIStepGetNumLinSolvSetups()

No. of nonlinear solver iterations MRIStepGetNumNonlinSolvIters()

No. of nonlinear solver convergence failures MRIStepGetNumNonlinSolvConvFails()

Single accessor to all nonlinear solver statistics MRIStepGetNonlinSolvStats()

int MRIStepGetNumLinSolvSetups (void *arkode_mem, long int *nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nlinsetups — number of linear solver setup calls made.
Return value:
¢ ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

Notes: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumNonlinSolvIters (void *arkode_mem, long int *nniters)

Returns the number of nonlinear solver iterations performed (so far).
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* nniters — number of nonlinear iterations performed.
Return value:

e ARK SUCCESS if successful
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* ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumNonlinSolvConvFails (void *arkode_mem, long int *nncfails)

Returns the number of nonlinear solver convergence failures that have occurred (so far).
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* nncfails — number of nonlinear convergence failures.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory was NULL

Notes: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNonlinSolvStats(void *arkode_mem, long int *nniters, long int *nncfails)

Returns all of the nonlinear solver statistics in a single call.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nniters — number of nonlinear iterations performed.
* nncfails — number of nonlinear convergence failures.
Return value:
¢ ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: These are only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever
a new nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

Rootfinding optional output functions

Optional output Function name

Array showing roots found MRIStepGetRootInfo()
No. of calls to user root function MRIStepGetNumGEvals()

int MRIStepGetRootInfo (void *arkode_mem, int *rootsfound)

Returns an array showing which functions were found to have a root.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.
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* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root (the value
of nrtfn was supplied in the call to MRIStepRootInit()). Fort = 0... nrtfn-1, rootsfound[i] is

nonzero if g; has a root, and 0 if not.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int MRIStepGetNumGEvals (void *arkode_mem, long int *ngevals)

Returns the cumulative number of calls made to the user’s root function g.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* ngevals — number of calls made to g so far.

Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the MRIStep memory was NULL

Linear solver interface optional output functions

A variety of optional outputs are available from the ARKLS interface, as listed in the following table and elaborated
below. We note that where the name of an output would otherwise conflict with the name of an optional output from
the main solver, a suffix LS (for Linear Solver) has been added here (e.g. lenrwLS).

Table 5.20: Linear solver interface optional output functions

Optional output

Stored Jacobian of the ODE RHS function
Time at which the Jacobian was evaluated
Step number at which the Jacobian was evaluated
Size of real and integer workspaces

No. of Jacobian evaluations

No. of preconditioner evaluations

No. of preconditioner solves

No. of linear iterations

No. of linear convergence failures

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations
No. of fs calls for finite diff. J or Jv evals.
Last return from a linear solver function
Name of constant associated with a return flag

Function name
MRIStepGetJac()
MRIStepGetJacTime ()
MRIStepGetJacNumSteps()
MRIStepGetLinliorkSpace ()
MRIStepGetNumJacEvals()
MRIStepGetNumPrecEvals()
MRIStepGetNumPrecSolves()
MRIStepGetNumLinIters()
MRIStepGetNumLinConvFails()
MRIStepGetNumJTSetupEvals ()
MRIStepGetNumJtimesEvals()
MRIStepGetNumLinRhsEvals()
MRIStepGetLastLinFlag()
MRIStepGetLinReturnFlagName ()

int MRIStepGetJac (void *arkode_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the ODE implicit slow right-hand side function.

Parameters

Chapter 5. Using ARKODE



User Documentation for ARKODE, v5.6.0

» arkode_mem — the MRIStep memory structure
* J — the Jacobian matrix
Return values
» ARKLS_SUCCESS - the output value has been successfully set
e ARKLS_MEM_NULL - arkode_mem was NULL

e ARKLS_LMEM_NULL - the linear solver interface has not been initialized

not be altered.

Warning: This function is provided for debugging purposes and the values in the returned matrix should

int MRIStepGetJacTime (void *arkode_mem, sunrealtype *t_J)

Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit slow right-hand

side function was evaluated.

Parameters
» arkode_mem — the MRIStep memory structure
* t_J — the time at which the Jacobian was evaluated

Return values
* ARKLS_SUCCESS - the output value has been successfully set
e ARKLS_MEM_NULL - arkode_mem was NULL
* ARKLS_LMEM_NULL - the linear solver interface has not been initialized

int MRIStepGetJacNumSteps (void *arkode_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the

ODE implicit slow right-hand side function was evaluated.
Parameters

» arkode_mem — the MRIStep memory structure

* nst_J — the value of the internal step counter at which the Jacobian was evaluated

Return values
* ARKLS_SUCCESS - the output value has been successfully set
e ARKLS_MEM_NULL - arkode_mem was NULL
* ARKLS_LMEM_NULL - the linear solver interface has not been initialized

int MRIStepGetLinWorkSpace (void *arkode_mem, long int *lenrwLS, long int *leniwL.S)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* lenrwLS — the number of realtype values in the ARKLS workspace.
* leniwLS — the number of integer values in the ARKLS workspace.
Return value:

e ARKLS SUCCESS if successful
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* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e., summed over all processors).

int MRIStepGetNumJacEvals (void *arkode_mem, long int *njevals)

Returns the number of Jacobian evaluations.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* njevals — number of Jacobian evaluations.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumPrecEvals (void *arkode_mem, long int *npevals)

Returns the total number of preconditioner evaluations, i.e., the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e npevals — the current number of calls to psetup.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumPrecSolves (void *arkode_mem, long int *npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* npsolves — the number of calls to psolve.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL
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Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumLinIters (void *arkode_mem, long int *nliters)

Returns the cumulative number of linear iterations.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nliters — the current number of linear iterations.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
e ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumLinConvFails (void *arkode_mem, long int *nlcfails)

Returns the cumulative number of linear convergence failures.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* nlcfails — the current number of linear convergence failures.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the MRIStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumJTSetupEvals (void *arkode_mem, long int *njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* njtsetup — the current number of calls to jtsetup.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNum]timesEvals (void *arkode_mem, long int *njvevals)

Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:
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* arkode_mem — pointer to the MRIStep memory block.
* njvevals — the current number of calls to jtimes.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetNumLinRhsEvals (void *arkode_mem, long int *nfevalsLS)

Returns the number of calls to the user-supplied implicit right-hand side function f for finite difference Jacobian
or Jacobian-vector product approximation.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nfevalsLS — the number of calls to the user implicit right-hand side function.
Return value:
* ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the MRIStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL
Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

int MRIStepGetLastLinFlag(void *arkode_mem, long int *Isflag)

Returns the last return value from an ARKLS routine.
Arguments:

* arkode_mem — pointer to the MRIStep memory block.

¢ Isflag — the value of the last return flag from an ARKLS function.
Return value:

e ARKLS SUCCESS if successful

e ARKLS_MEM_NULL if the MRIStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules,
then the value of Isflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures, Isflag
is negative.

Otherwise, if the ARKLS setup function failed (MRIStepEvolve () returned ARK_LSETUP_FAIL), then Isflag
will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL _UNREC or SUNLS_PACKAGE_FAIL_UNREC.

If the ARKLS solve function failed (MRIStepEvolve () returned ARK_LSOLVE_FAIL), then Isflag contains the
error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL, indicating
that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicating that a matrix-free iterative
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solver was provided, but is missing a routine for the matrix-vector product approximation, SUNLS_ATIMES_-
FAIL_UNREC, indicating an unrecoverable failure in the Jv function; SUNLS_PSOLVE_NULL, indicating that
an iterative linear solver was configured to use preconditioning, but no preconditioner solve routine was pro-
vided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function failed unrecoverably;
SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure (SPGMR and SPFGMR only); SUNLS_-
QRSOL_FAIL, indicating that the matrix R was found to be singular during the QR solve phase (SPGMR and
SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable failure in an external itera-
tive linear solver package.

char *MRIStepGetLinReturnFlagName (long int Isflag)
Returns the name of the ARKLS constant corresponding to Isflag.

Arguments:
¢ Isflag — a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 < Isflag < n (LU factorization failed), this routine
returns “NONE”.

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters or write the current
MRI coupling table. While neither of these would typically be called during the course of solving an initial value
problem, these may be useful for users wishing to better understand MRIStep.

Table 5.21: General usability functions

Optional routine Function name
Output all MRIStep solver parameters ~ MRIStepliriteParameters()
Output the current MRI coupling table MRIStepliriteCoupling()

int MRIStepWriteParameters (void *arkode_mem, FILE *fp)
Outputs all MRIStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
e ARKS SUCCESS if successful
* ARKS_MEM_NULL if the MRIStep memory was NULL
Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int MRIStepWriteCoupling(void *arkode_mem, FILE *fp)
Outputs the current MRI coupling table to the provided file pointer.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* fp — pointer to use for printing the Butcher tables.
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Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all processes
would be identical.

5.5.2.10 MRIStep re-initialization function

To reinitialize the MRIStep module for the solution of a new problem, where a prior call to MRIStepCreate () has been
made, the user must call the function MRIStepReInit (). The new problem must have the same size as the previous
one. This routine retains the current settings for all ARKstep module options and performs the same input checking
and initializations that are done in MRIStepCreate (), but it performs no memory allocation as is assumes that the
existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set tstop value specified
via a call to MRIStepSetStopTime (). Following a successful call to MRIStepReInit (), call MRIStepEvolve()
again for the solution of the new problem.

The use of MRIStepReInit () requires that the number of Runge—Kutta stages for both the slow and fast methods be
no larger for the new problem than for the previous problem.

One important use of the MRIStepReInit () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS functions (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int MRIStepReInit (void *arkode_mem, ARKRhsFn fse, ARKRhsFn fsi, realtype t0, N_Vector y0)

Provides required problem specifications and re-initializes the MRIStep outer (slow) stepper.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* fse — the name of the function (of type ARKRhsFn()) defining the explicit slow portion of the right-hand
side function in y = fZ(t,y) + f1(t,y) + fF(t,y).

* fsi — the name of the function (of type ARKRhsFn()) defining the implicit slow portion of the right-hand
side functioniny = fZ(t,y) + f1(t,y) + fF(t,y).

* 10 — the initial value of ¢.
* y0 — the initial condition vector /(o).
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument has an illegal value.
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Notes: If the inner (fast) stepper also needs to be reinitialized, its reinitialization function should be called before
calling MRIStepReInit () to reinitialize the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, MRIStepReInit () also sends an error message to the error handler function.

5.5.2.11 MRIStep reset function

To reset the MRIStep module to a particular state (¢, y(tgr)) for the continued solution of a problem, where a prior
call to MRIStepCreate () has been made, the user must call the function MRIStepReset (). Like MRIStepReInit ()
this routine retains the current settings for all MRIStep module options and performs no memory allocations but,
unlike MRIStepReInit (), this routine performs only a subset of the input checking and initializations that are done
in MRIStepCreate(). In particular this routine retains all internal counter values and the step size/error history and
does not reinitialize the linear and/or nonlinear solver but it does indicate that a linear solver setup is necessary in the
next step. Like MRIStepReInit (), a call to MRIStepReset () will delete any previously-set tstop value specified via
a call to MRIStepSetStopTime (). Following a successful call to MRIStepReset (), call MRIStepEvolve () again
to continue solving the problem. By default the next call to MRIStepEvolve () will use the step size computed by
MRIStep prior to calling MRIStepReset (). To set a different step size or have MRIStep estimate a new step size use
MRIStepSetInitStep().

One important use of the MRIStepReset () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to MRIStepReset (). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int MRIStepReset (void *arkode_mem, realtype tR, N_Vector yR)

Resets the current MRIStep outer (slow) time-stepper module state to the provided independent variable value
and dependent variable vector.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* tR — the value of the independent variable ¢.
* YR — the value of the dependent variable vector y(tg).
Return value:
¢ ARK_SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument has an illegal value.

Notes: If the inner (fast) stepper also needs to be reset, its reset function should be called before calling MRIS-
tepReset () to reset the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, MRIStepReset () also sends an error message to the error handler function.
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Changed in version 5.3.0: This now calls the corresponding MRIStepInnerResetFn with the same (fR, yR)
arguments for the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

5.5.2.12 MRIStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the MRIStep integrator may be “resized” be-
tween slow integration steps, through calls to the MRIStepResize() function. This function modifies MRIStep’s
internal memory structures to use the new problem size.

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn())isnotsupplied (i.e., is set to NULL), then all existing vectors internal to MRIStep will be destroyed
and re-cloned from the new input vector.

int MRIStepResize (void *arkode_mem, N_Vector yR, realtype tR, ARKVecResizeFn resize, void *resize_data)

Re-initializes MRIStep with a different state vector.

Arguments:

arkode_mem — pointer to the MRIStep memory block.

¥R — the newly-sized solution vector, holding the current dependent variable values y(tg).
tR — the current value of the independent variable ¢ (this must be consistent with yR).
resize — the user-supplied vector resize function (of type ARKVecResizeFn().

resize_data — the user-supplied data structure to be passed to resize when modifying internal MRIStep
vectors.

Return value:

L]

ARK_SUCCESS if successful

ARK_MEM_NULL if the MRIStep memory was NULL
ARK_NO_MALLOC if arkode_mem was not allocated.
ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, MRIStepResize () also sends an error message to the error handler function.

Resizing the linear solver:

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures
must also be resized. At present, none of these include a solver-specific “resize” function, so the linear
solver memory must be destroyed and re-allocated following each call to MRIStepResize (). Moreover,
the existing ARKLS interface should then be deleted and recreated by attaching the updated SUNLinear-
Solver (and possibly SUNMatrix) object(s) through calls to MRIStepSetLinearSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-
vector product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must
be called again following the solver re-specification.

Resizing the absolute tolerance array:

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
MRIStepResize(), so the new absolute tolerance vector should be re-set following each call to MRIS-
tepResize () through anew call to MRIStepSVtolerances () and possibly MRIStepResVtolerance()
if applicable.

If scalar-valued tolerances or a tolerance function was specified through either YNRIStepSStolerances()
or MRIStepWFtolerances (), then these will remain valid and no further action is necessary.
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Note: For an example showing usage of the similar ARKStepResize () routine, see the supplied serial C
example problem, ark_heat1D_adapt.c.

5.5.3 MRI Coupling Coefficients Data Structure

MRIStep supplies several built-in MIS, MRI-GARK, and IMEX-MRI-GARK methods, see §5.5.3.2 for the current set
of coupling tables and their corresponding identifiers. Additionally, a user may supply a custom set of slow-to-fast time
scale coupling coeflicients by constructing a coupling table and attaching it with MRIStepSetCoupling().

As described in §2.6, the coupling from the slow time scale to the fast time scale is encoded by a vector of slow ‘stage
time’ abscissae, ¢> € R*T! and a set of coupling matrices T{¥} ¢ R(s+1)x(s+1) apd ik} ¢ REFDX(+D - Ap
MRIStepCoupling object stores this information and provides several related utility functions for creating a coupling
table. The MRIStepCoupling type is defined as:

typedef MRIStepCouplingMem *MRIStepCoupling
where MRIStepCouplingMem is the structure

struct MRIStepCouplingMem
{

int nmat;

int stages;

int q;

int p;

realtype ***G;

realtype ***W;

realtype *c;
};

and the members of the strucutre are:

* nmat corresponds to the number of coupling matrices Q{¥} for the slow-nonstiff terms and/or T'1¥} for the slow-
stiff terms in (2.10),

¢ stages is the number of abscissae i.e., s + 1 above,
* g and p indicate the orders of accuracy for both the method and the embedding, respectively,

* W is a three-dimensional array with dimensions [nmat] [stages] [stages] containing the method’s Ok cou-
pling matrices for the slow-nonstiff (explicit) terms in (2.10),

* Gis a three-dimensional array with dimensions [nmat] [stages] [stages] containing the method’s {4} cou-
pling matrices for the slow-stiff (implicit) terms in (2.10), and

* cis an array of length stages containing the slow abscissae ¢ for the method.
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5.5.3.1 MRIStepCoupling functions

This section describes the functions for creating and interacting with coupling tables. The function prototypes and as
well as the relevant integer constants are defined arkode/arkode_mristep.h.

Table 5.22: MRIStepCoupling functions

Function name Description

MRIStepCoupling_LoadTable() Loads a pre-defined MRIStepCoupling table by ID
MRIStepCoupling_LoadTableByName() Loads a pre-defined MRIStepCoupling table by name
MRIStepCoupling_Alloc() Allocate an empty MRIStepCoupling table
MRIStepCoupling_Create() Create a new MRIStepCoupling table from coefficients
MRIStepCoupling_MIStoMRI() Create a new MRIStepCoupling table from a slow Butcher table
MRIStepCoupling_Copy () Create a copy of a MRIStepCoupling table
MRIStepCoupling_Space() Get the MRIStepCoupling table real and integer workspace sizes
MRIStepCoupling_Free() Deallocate a MRIStepCoupling table
MRIStepCoupling_Write() Write the MRIStepCoupling table to an output file

MRIStepCoupling MRIStepCoupling_LoadTable (ARKODE_MRITableID method)

Retrieves a specified coupling table. For further information on the current set of coupling tables and their
corresponding identifiers, see §5.5.3.2.

Arguments:
* method — the coupling table identifier.
Return value:
¢ An MRIStepCoupling structure if successful.
* A NULL pointer if method was invalid or an allocation error occurred.

MRIStepCoupling MRIStepCoupling_LoadTableByName (const char *method)

Retrieves a specified coupling table. For further information on the current set of coupling tables and their
corresponding name, see §5.5.3.2.

Arguments:
* method — the coupling table name.
Return value:
¢ An MRIStepCoupling structure if successful.

e A NULL pointer if method was invalid, method was "ARKODE_MRI_NONE", or an allocation error oc-
curred.

Note: This function is case sensitive.

MRIStepCoupling MRIStepCoupling_Alloc(int nmat, int stages, int type)
Allocates an empty MRIStepCoupling table.

Arguments:
« nmat — number of Q{¥} and/or I'{¥} matrices in the coupling table.
* stages — number of stages in the coupling table.

* type — the method type: explicit (0), implicit (1), or ImEx (2).
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Return value:
e An MRIStepCoupling structure if successful.

* A NULL pointer if stages or type was invalid or an allocation error occurred.

Note: For explicit methods only the W array is allocated, with implicit methods only the G array is allocated,
and for ImEx methods both W and G are allocated.

MRIStepCoupling MRIStepCoupling_Create (int nmat, int stages, int q, int p, realtype *W, realtype *G, realtype
*0)

Allocates a coupling table and fills it with the given values.
Arguments:
+ nmat — number of Q{¥} and/or T'{¥} matrices in the coupling table.
* stages — number of stages in the method.
* g — global order of accuracy for the method.
¢ p — global order of accuracy for the embedded method.

* W—array of coefficients defining the explicit coupling matrices Q2{*}. The entries should be stored as a
1D array of size nmat * stages * stages, in row-major order. If the slow method is implicit pass
NULL.

* G- array of coefficients defining the implicit coupling matrices I't*}. The entries should be stored as a
1D array of size nmat * stages * stages, in row-major order. If the slow method is explicit pass
NULL.

* c — array of slow abscissae for the MRI method. The entries should be stored as a 1D array of length
stages.

Return value:
¢ An MRIStepCoupling structure if successful.

* A NULL pointer if stages was invalid, an allocation error occurred, or the input data arrays are incon-
sistent with the method type.

Note: As embeddings are not currently supported in MRIStep, p should be equal to zero.

MRIStepCoupling MRIStepCoupling MIStoMRI(ARKodeButcherTuble B, int g, int p)

Creates an MRI coupling table for a traditional MIS method based on the slow Butcher table B, following the
formula shown in (2.12)

Arguments:
* B —the ARKodeButcherTable for the ‘slow’” MIS method.
¢ g — the overall order of the MIS/MRI method.
* p — the overall order of the MIS/MRI embedding.
Return value:
¢ An MRIStepCoupling structure if successful.

* A NULL pointer if an allocation error occurred.
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Note: The s-stage slow Butcher table must have an explicit first stage (i.e.,c; =0and A; ; =0for1 < j <s)
and sorted abscissae (i.e., ¢; > ¢;_1 for 2 < i < s).

Since an MIS method is at most third order accurate, and even then only if it meets certain compatibility cri-
teria (see (2.13)), the values of ¢ and p may differ from the method and embedding orders of accuracy for the
Runge—Kutta method encoded in B, which is why these arguments should be supplied separately.

As embeddings are not currently supported in MRIStep, then p should be equal to zero.

MRIStepCoupling MRIStepCoupling_Copy (MRIStepCoupling C)
Creates copy of the given coupling table.

Arguments:
* C - the coupling table to copy.

Return value:
¢ An MRIStepCoupling structure if successful.
e A NULL pointer if an allocation error occurred.

void MRIStepCoupling_Space (MRIStepCoupling C, sunindextype *liw, sunindextype *1rw)

Get the real and integer workspace size for a coupling table.
Arguments:
* C - the coupling table.
¢ lenrw — the number of realtype values in the coupling table workspace.
* leniw — the number of integer values in the coupling table workspace.
Return value:
e ARK SUCCESS if successful.
* ARK_MEM_NULL if the Butcher table memory was NULL.
void MRIStepCoupling_Free (MRIStepCoupling C)

Deallocate the coupling table memory.
Arguments:
* C— the coupling table.

void MRIStepCoupling _Write(MRIStepCoupling C, FILE *outfile)
Write the coupling table to the provided file pointer.

Arguments:
* C - the coupling table.

* outfile — pointer to use for printing the table.

Note: The outfile argument can be stdout or stderr, or it may point to a specific file created using fopen.
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5.5.3.2 MRI Coupling Tables

MRIStep currently includes three classes of coupling tables: those that encode methods that are explicit at the slow
time scale, those that are diagonally-implicit and solve-decoupled at the slow time scale, and those that encode methods
with an implicit-explicit method at the slow time scale. We list the current identifiers, multirate order of accuracy, and
relevant references for each in the tables below. For methods with an implicit component, we also list the number of
implicit solves per step that are required at the slow time scale.

Each of the coupling tables that are packaged with MRIStep are specified by a unique ID having type:
typedef int ARKODE_MRITableID

with values specified for each method below (e.g., ARKODE_MIS_KW3).

Table 5.23: Explicit MRI-GARK coupling tables. The default method
for each order is marked with an asterisk (*).

Table name Order Reference
ARKODE_MIS_KW3 3* [76]
ARKODE_MRI_GARK_ERK33a 3 [74]
ARKODE_MRI_GARK_ERK45a 4* [74]

Table 5.24: Diagonally-implicit, solve-decoupled MRI-GARK coupling
tables. The default method for each order is marked with an asterisk (*).

Table name Order Implicit Solves Reference
ARKODE_MRI_GARK_IRK21a 2% 1 [74]
ARKODE_MRI_GARK_ESDIRK34a 3* 3 [74]
ARKODE_MRI_GARK_ESDIRK46a 4* 5 [74]

Table 5.25: Diagonally-implicit, solve-decoupled IMEX-MRI-GARK
coupling tables. The default method for each order is marked with an
asterisk (*).

Table name Order Implicit Solves Reference
ARKODE_IMEX_MRI_GARK3a 3* 2 [27]
ARKODE_IMEX_MRI_GARK3b 3 2 [27]
ARKODE_IMEX_MRI_GARK4 4* 5 [27]

5.5.4 MRIStep Custom Inner Steppers
Recall, MIS and MRI-GARK methods require solving the auxiliary IVP
o(t) = fE(t,v) + ri(t), v(t,sm-fl) =2z (5.2)

fori > 2onthe interval t € [t , .ty ] wherety , | = t,_1+cf ;h°. The forcing term r;(t) presented in §2.6 can
be equivalently written as

ri(t) = Zd)i{k}Tk + Z’%{k}Tk (5.3)

k>0 k>0
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tS

5 i21)/(hSAcP) is the normalized time with Acf = (¢f —¢7 ;) and the polynomial coefficient

where 7 = (t —
vectors are

i—1
Ak 1 k N 1k
oM = R Dol P ) and A = ASZ% S 7). (5:4)
ij=1 ij=1

To evolve the IVP (5.2) MRIStep utilizes a generic time integrator interface defined by the MRIStepInnerStepper
base class. This section presents the MRIStepInnerStepper base class and methods that define the integrator interface
as well as detailing the steps for creating an MRIStepInnerStepper.

5.5.4.1 The MRIStepInnerStepper Class

As with other SUNDIALS classes, the MRIStepInnerStepper abstract base class is implemented using a C structure
containing a content pointer to the derived class member data and a structure of function pointers the derived class
implementations of the virtual methods. The MRIStepInnerStepper type is defined in include/arkode/arkode.h
as

typedef struct _MRIStepInnerStepper *MRIStepInnerStepper

The actual definitions of the _MRIStepInnerStepper structure and the corresponding operations structure are kept
private to allow for the object internals to change without impacting user code. The following sections describe the
§5.5.4.1 and the virtual §5.5.4.1 that a must be provided by a derived class.

Base Class Methods

This section describes methods provided by the MRIStepInnerStepper abstract base class that aid the user in imple-
menting derived classes. This includes functions for creating and destroying a generic base class object, attaching and
retrieving the derived class content pointer, setting function pointers to derived class method implementations, and
accessing base class data e.g., for computing the forcing term (5.3).

Creating and Destroying an Object

int MRIStepInnerStepper_Create(SUNContext sunctx, MRIStepInnerStepper *stepper)

This function creates an MRIStepInnerStepper object to which a user should attach the member data (content)
pointer and method function pointers.

Arguments:
* sunctx —the SUNDIALS simulation context.
* stepper — a pointer to an inner stepper object.
Return value:
« ARK_SUCCESS if successful
 ARK_MEM_FAIL if a memory allocation error occurs

Example usage:

/* create an instance of the base class */
MRIStepInnerStepper inner_stepper = NULL;
flag = MRIStepInnerStepper_Create(&inner_stepper) ;

Example codes:
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e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Note: See §5.5.4.1 and §5.5.4.1 for details on how to attach member data and method function pointers.

int MRIStepInnerStepper_Free (MRISteplnnerStepper *stepper)
This function destroys an MRIStepInnerStepper object.

Arguments:

* stepper — a pointer to an inner stepper object.
Return value:

« ARK_SUCCESS if successful

Example usage:
/* destroy an instance of the base class */

flag = MRIStepInnerStepper_Free(&inner_stepper);

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Note: This function only frees memory allocated within the base class and the base class structure itself. The
user is responsible for freeing any memory allocated for the member data (content).

Attaching and Accessing the Content Pointer

int MRIStepInnerStepper_SetContent (MRIStepInnerStepper stepper, void *content)

This function attaches a member data (content) pointer to an MRIStepInnerStepper object.
Arguments:

* stepper — an inner stepper object.

* content — a pointer to the stepper member data.
Return value:

* ARK_SUCCESS if successful

e ARK_ILL_INPUT if the stepper is NULL

Example usage:

/* set the inner stepper content pointer */
MyStepperContent my_object_data;
flag = MRIStepInnerStepper_SetContent(inner_stepper, &my_object_data);

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp
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int MRIStepInnerStepper_GetContent (MRISteplnnerStepper stepper, void **content)

This function retrieves the member data (content) pointer from an MRIStepInnerStepper object.
Arguments:

* stepper — an inner stepper object.

* content — a pointer to set to the stepper member data pointer.
Return value:

¢ ARK_SUCCESS if successful

e ARK_ILL_INPUT if the stepper is NULL

Example usage:

/* get the inner stepper content pointer */
void *content ;
MyStepperContent *“my_object_data;

flag = MRIStepInnerStepper_GetContent(inner_stepper, &content);
my_object_data = (MyStepperContent*) content;

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Setting Member Functions

int MRIStepInnerStepper_SetEvolveFn(MRISteplnnerStepper stepper, MRIStepInnerEvolveFn fn)
This function attaches an MRIStepInnerEvolveFn function to an MRIStepInnerStepper object.

Arguments:

* stepper — an inner stepper object.

e fn—the MRIStepInnerStepper function to attach.
Return value:

* ARK_SUCCESS if successful

* ARK_ILL_INPUT if the stepper is NULL

Example usage:

/* set the inner stepper evolve function */
flag = MRIStepInnerStepper_SetEvolveFn(inner_stepper, MyEvolve);

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_SetFullRhsFn(MRISteplnnerStepper stepper, MRIStepInnerFullRhsFn fn)
This function attaches an MRIStepInnerFullRhsFn function to an MRIStepInnerStepper object.

Arguments:

* stepper — an inner stepper object.
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* fn—the MRIStepInnerFullRhsFn function to attach.
Return value:

¢ ARK_SUCCESS if successful

e ARK_ILL_INPUT if the stepper is NULL

Example usage:

/% set the inner stepper full right-hand side function */
flag = MRIStepInnerStepper_SetFullRhsFn(inner_stepper, MyFullRHS);

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_SetResetFn(AMRISteplnnerStepper stepper, MRIStepInnerResetFn fn)
This function attaches an MRIStepInnerResetFn function to an MRIStepInnerStepper object.

Arguments:

* stepper — an inner stepper object.

e fn—the MRIStepInnerResetFn function to attach.
Return value:

* ARK_SUCCESS if successful

¢ ARK_ILL_INPUT if the stepper is NULL

Example usage:

/* set the inner stepper reset function */
flag = MRIStepInnerStepper_SetResetFn(inner_stepper, MyReset);

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Applying and Accessing Forcing Data

When integrating the ODE (5.2) the MRIStepInnerStepper is responsible for evaluating ODE right-hand side func-
tion f¥(t,v) as well as computing and applying the forcing term (5.3) to obtain the full right-hand side of the inner
(fast) ODE (5.2). The functions in this section can be used to either apply the inner (fast) forcing or access the data
necessary to construct the inner (fast) forcing polynomial.

int MRIStepInnerStepper_AddForcing (MRIStepInnerStepper stepper, realtype t, N_Vector ff)

This function computes the forcing term (5.3) at the input time ¢ and adds it to input vector ff, i.e., the inner (fast)
right-hand side vector.

Arguments:
* stepper — an inner stepper object.
* ¢t —the time at which the forcing should be evaluated.
* f —the vector to which the forcing should be applied.

Return value:
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* ARK_SUCCESS if successful
e ARK_ILL_INPUT if the stepper is NULL
Example usage:
/* compute the forcing term and add it the fast RHS vector */

flag = MRIStepInnerStepper_AddForcing(inner_stepper, t, f_fast);

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_GetForcingData (MRIStepInnerStepper stepper, realtype *tshift, realtype *tscale,

N_Vector **forcing, int *nforcing)

This function provides access to data necessary to compute the forcing term (5.3). This includes the shift and
scaling factors for the normalized time 7 = (t— ti 1)/ (h® Ac?) and the array of polynomial coefficient vectors
ik}

i

Arguments:
* stepper — an inner stepper object.
* tshift — the time shift to apply to the current time when computing the forcing, tiiq-

s tscale — the time scaling to apply to the current time when computing the forcing, h%Acy.

* forcing — a pointer to an array of forcing vectors, &;{k}.

* nforcing — the number of forcing vectors.
Return value:

« ARK_SUCCESS if successful

e ARK_ILL_INPUT if the stepper is NULL

Example usage:

int k, flag;

int nforcing_vecs; /* number of forcing vectors */
double tshift, tscale; /* time normalization values */
double tau; /* normalized time &4
double tau_k; /* tau raised to the power k */
N_Vector *forcing_vecs; /* array of forcing vectors */

/* get the forcing data from the inner (fast) stepper */
flag = MRIStepInnerStepper_GetForcingData(inner_stepper, &tshift, &tscale,
&forcing_vecs, &nforcing_vecs);

/* compute the normalized time, initialize tau’k */
tau = (t - tshift) / tscale;
tau_k = 1.0;

/% compute the polynomial forcing terms and add them to fast RHS vector */
for (k = 0; k < nforcing_vecs; k++)
{

N_VLinearSum(1.0, f_fast, tau_k, forcing_vecs[k], f_fast);

(continues on next page)
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(continued from previous page)

tau_k *= tau;

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Implementation Specific Methods

This section describes the required and optional virtual methods defined by the MRIStepInnerStepper abstract base
class.

Required Member Functions

An MRIStepInnerStepper must provide implementations of the following member functions:

typedef int (*MRIStepInnerEvolveFn)(MRIStepinnerStepper stepper, realtype t0, realtype tout, N_Vector v)
This function advances the state vector v for the inner (fast) ODE system from time 70 to time fout.

Arguments:
* stepper — the inner stepper object.
* 10 — the initial time for the inner (fast) integration.
* tout — the final time for the inner (fast) integration.
¢ v —on input the state at time #0 and, on output, the state at time fout.

Return value:
An MRIStepInnerEvolveFn should return O if successful, a positive value if a recoverable error occurred,
or a negative value if it failed unrecoverably.

Example codes:
e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

typedef int (*MRIStepInnerFullRhsFn)(MRIStepInnerStepper stepper, realtype t, N_Vector v, N_Vector f, int
mode)

This function computes the full right-hand side function of the inner (fast) ODE, f'(¢,v) in (5.2) for a given
value of the independent variable ¢ and state vector y.

Arguments:

* stepper — the inner stepper object.

¢ t — the current value of the independent variable.

 y —the current value of the dependent variable vector.

* f — the output vector that forms a portion the ODE right-hand side, f¥'(¢,y) in (2.10).

* mode — a flag indicating the purpose for which the right-hand side function evaluation is called.
— ARK_FULLRHS_START - called at the beginning of the simulation
— ARK_FULLRHS_END - called at the end of a successful step
— ARK_FULLRHS_OTHER - called elsewhere e.g., for dense output
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Return value:
An MRIStepInnerFullRhsFn should return O if successful, a positive value if a recoverable error oc-
curred, or a negative value if it failed unrecoverably.

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Optional Member Functions

An MRIStepInnerStepper may provide implementations of any of the following member functions:

typedef int (*MRIStepInnerResetFn)(MRISteplnnerStepper stepper, realtype tR, N_Vector vR)

This function resets the inner (fast) stepper state to the provided independent variable value and dependent vari-
able vector.

Arguments:
* stepper — the inner stepper object.
* {R — the value of the independent variable ¢t .
* vR — the value of the dependent variable vector v(tg).

Return value:
An MRIStepInnerResetFn should return O if successful, a positive value if a recoverable error occurred,
or a negative value if it failed unrecoverably.

Example codes:

e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

5.5.4.2 Implementing an MRIStepInnerStepper

To create an MRIStepInnerStepper implementation:
1. Define the stepper-specific content.

This is typically a user-defined structure in C codes, a user-defined class or structure in C++ codes, or a user-
defined module in Fortran codes. This content should hold any data necessary to perform the operations defined
by the MRIStepInnerStepper member functions.

2. Define implementations of the required member functions (see §5.5.4.1).

These are typically user-defined functions in C, member functions of the user-defined structure or class in C++,
or functions contained in the user-defined module in Fortran.

Note that all member functions are passed the MRIStepInnerStepper object and the stepper-specific content
can, if necessary, be retrieved using MRIStepInnerStepper_GetContent().

3. In the user code, before creating the MRIStep memory structure with MRIStepCreate (), do the following:
1. Create an MRIStepInnerStepper object with MRIStepInnerStepper_Create().

2. Attach a pointer to the stepper content to the MRIStepInnerStepper object with MRIStepInnerStep-
per_SetContent () if necessary, e.g., when the content is a C structure.

3. Attach the member function implementations using the functions described in §5.5.4.1.
4. Attach the MRIStepInnerStepper object to the MRIStep memory structure with MRIStepCreate().

For an example of creating and attaching a user-defined inner stepper see the example code examples/arkode/CXX_-
parallel/ark_diffusion_reaction_p.cpp where CVODE is wrapped as an MRIStepInnerStepper.
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5.6

User-supplied functions

The user-supplied functions for ARKODE consist of:

at least one function defining the ODE (required),

a function that handles error and warning messages (optional),

a function that provides the error weight vector (optional),

a function that provides the residual weight vector (optional, ARKStep only),

a function that handles adaptive time step error control (optional, ARKStep/ERKStep only),
a function that handles explicit time step stability (optional, ARKStep/ERKStep only),

a function that updates the implicit stage prediction (optional, ARKStep/MRIStep only),

a function that defines the root-finding problem(s) to solve (optional),

one or two functions that provide Jacobian-related information for the linear solver, if a component is treated
implicitly and a Newton-based nonlinear iteration is chosen (optional, ARKStep/MRIStep only),

one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if linear
systems of equations are to be solved using an iterative method (optional, ARKStep/MRIStep only),

if the problem involves a non-identity mass matrix M # I with ARKStep:
— one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),
— one or two functions that define the mass matrix preconditioner for use if an iterative mass matrix solver is

chosen (optional), and

a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKStepResize (), ERKStepResize(), or MRIStepRe-
size() (optional).

MRIStep only: functions to be called before and after each inner integration to perform any communication or
memory transfers of forcing data supplied by the outer integrator to the inner integrator, or state data supplied by
the inner integrator to the outer integrator.

if relaxation is enabled (optional), a function that evaluates the conservative or dissipative function £(y(t)) (re-
quired) and a function to evaluate its Jacobian &’(y(t)) (required).

5.6.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the explicit and/or implicit portions of the
ODE system to ARKStep, the ODE system function to ERKStep, or the “slow” right-hand side of the ODE system to
MRIStep:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void *user_data)

These functions compute the ODE right-hand side for a given value of the independent variable ¢ and state vector
Y.
Arguments:

* ¢ —the current value of the independent variable.

 y —the current value of the dependent variable vector.

* ydot — the output vector that forms [a portion of] the ODE RHS f (¢, y).
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* user_data — the user_data pointer that was passed to ARKStepSetUserData(), ERKStepSetUser-
Data(), or MRIStepSetUserData().

Return value:

An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in which
case ARKODE will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes:
Allocation of memory for ydot is handled within ARKODE.

The vector ydot may be uninitialized on input; it is the user’s responsibility to fill this entire vector
with meaningful values.

A recoverable failure error return from the ARKRhsFn is typically used to flag a value of the de-
pendent variable y that is “illegal” in some way (e.g., negative where only a non-negative value is
physically meaningful). If such a return is made, ARKODE will attempt to recover (possibly repeat-
ing the nonlinear iteration, or reducing the step size in ARKStep or ERKStep) in order to avoid this
recoverable error return. There are some situations in which recovery is not possible even if the right-
hand side function returns a recoverable error flag. One is when this occurs at the very first call to the
ARKRhsFn (in which case ARKODE returns ARK_ FIRST RHSFUNC_ERR). Another is when a re-
coverable error is reported by ARKRhsFn after the ARKStep integrator completes a successful stage,
in which case ARKStep returns ARK_UNREC_RHSFUNC_ERR). Similarly, since MRIStep does not
currently support adaptive time stepping at the slow time scale, it may halt on a recoverable error flag
that would normally have resulted in a stepsize reduction.

5.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ARKStepSetErrFile(), ERKStepSetErrFile(), and MRIStepSetErrFile()), the user may provide a function of
type ARKErrHandlerFn to process any such messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char *module, const char *function, char *msg, void
*user_data)

This function processes error and warning messages from ARKODE and its sub-modules.
Arguments:

e error_code — the error code.

* module — the name of the ARKODE module reporting the error.

* function — the name of the function in which the error occurred.

* msg — the error message.

* user_data — a pointer to user data, the same as the eh_data parameter that was passed to ARK-
StepSetErrHandlerFn(), ERKStepSetErrHandlerFn(), or MRIStepSetErrHandlerFn().

Return value:
An ARKErrHandlerFn function has no return value.

Notes:
error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns a
pointer to memory encounters an error, it sets error_code to 0.
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5.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwtFn
1/2
1 n
to compute a vector ewr containing the weights in the WRMS norm ||[v||wraps = ( Z (ewt; vi)2> . These
n
i=1
weights will be used in place of those defined in §2.7.
typedef int (*ARKEwWtFn)(N_Vector y, N_Vector ewt, void *user_data)
This function computes the WRMS error weights for the vector y.

Arguments:

» y — the dependent variable vector at which the weight vector is to be computed.
* ewt — the output vector containing the error weights.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to the Se-
tUserData function

Return value:

An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.
Notes:

Allocation of memory for ewt is handled within ARKODE.

The error weight vector must have all components positive. It is the user’s responsibility to perform this
test and return -1 if it is not satisfied.

5.6.4 Residual weight function (ARKStep only)

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwtFn to compute a vector rwt containing the weights in

n

1/2
1
the WRMS norm ||v||wrrps = ( Z (rwt; vi)2> . These weights will be used in place of those defined in §2.7.
n
i=1

typedef int (*ARKRwtFn)(N_Vector y, N_Vector rwt, void *user_data)
This function computes the WRMS residual weights for the vector y.
Arguments:
* y — the dependent variable vector at which the weight vector is to be computed.
* rwt — the output vector containing the residual weights.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData().

Return value:
An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 otherwise.

Notes:
Allocation of memory for rwt is handled within ARKStep.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this
test and return -1 if it is not satisfied.
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5.6.5 Time step adaptivity function (ARKStep and ERKStep only)

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size h for the next integration step. These steps should
be chosen such that the error estimate for the next time step remains below 1.

typedef int (*ARKAdaptFn)(N_Vector y, realtype t, realtype hl, realtype h2, realtype h3, realtype el, realtype €2,
realtype €3, int q, int p, realtype *hnew, void *user_data)

This function implements a time step adaptivity algorithm that chooses h to satisfy the error tolerances.
Arguments:

» y — the current value of the dependent variable vector.

¢ t — the current value of the independent variable.

* hl — the current step size, t,, — t,,—1.

e h2 —the previous step size, t,,—1 — tn—2.

* h3 —the step size t,,—o — ty—3.

* el —the error estimate from the current step, n.

* e2 —the error estimate from the previous step, n — 1.

* e3 —the error estimate from the step n — 2.

* g — the global order of accuracy for the method.

* p —the global order of accuracy for the embedded method.

* hnew — the output value of the next step size.

* user_data — a pointer to user data, the same as the 4_data parameter that was passed to ARKStepSe-
tAdaptivityFn() or ERKStepSetAdaptivityFn().

Return value:
An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero value
otherwise.

5.6.6 Explicit stability function (ARKStep and ERKStep only)

A user may supply a function to predict the maximum stable step size for the explicit portion of the problem, f¥(¢,y) in
ARKStep or the full f(¢,y) in ERKStep. While the accuracy-based time step adaptivity algorithms may be sufficient for
retaining a stable solution to the ODE system, these may be inefficient if the explicit right-hand side function contains
moderately stiff terms. In this scenario, a user may provide a function of type ARKExpStabFn to provide this stability
information to ARKODE. This function must set the scalar step size satisfying the stability restriction for the upcoming
time step. This value will subsequently be bounded by the user-supplied values for the minimum and maximum allowed
time step, and the accuracy-based time step.

typedef int (*ARKExpStabFn)(N_Vector y, realtype t, realtype *hstab, void *user_data)

This function predicts the maximum stable step size for the explicit portion of the ODE system.
Arguments:

 y —the current value of the dependent variable vector.

e t —the current value of the independent variable.

* hstab — the output value with the absolute value of the maximum stable step size.
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* user_data — a pointer to user data, the same as the estab_data parameter that was passed to ARK-
StepSetStabilityFn() or ERKStepSetStabilityFn().

Return value:
An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size, and a
non-zero value otherwise.

Notes:
If this function is not supplied, or if it returns Astab < 0.0, then ARKODE will assume that there is no
explicit stability restriction on the time step size.

5.6.7 Implicit stage prediction function (ARKStep and MRIStep only)

A user may supply a function to update the prediction for each implicit stage solution. If supplied, this routine will be
called after any existing ARKStep or MRIStep predictor algorithm completes, so that the predictor may be modified
by the user as desired. In this scenario, a user may provide a function of type ARKStagePredictFn to provide this
implicit predictor to ARKODE. This function takes as input the already-predicted implicit stage solution and the cor-
responding “time” for that prediction; it then updates the prediction vector as desired. If the user-supplied routine will
construct a full prediction (and thus the ARKODE prediction is irrelevant), it is recommended that the user not call
ARKStepSetPredictorMethod() or MRIStepSetPredictorMethod (), thereby leaving the default trivial predictor
in place.

typedef int (*ARKStagePredictFn)(realtype t, N_Vector zpred, void *user_data)

This function updates the prediction for the implicit stage solution.
Arguments:

¢ t —the current value of the independent variable containing the “time” corresponding to the predicted
solution.

* zpred — the ARKStep-predicted stage solution on input, and the user-modified predicted stage solution
on output.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

Return value:
An ARKStagePredictFn function should return 0 if it successfully set the upcoming stable step size, and a
non-zero value otherwise.

Notes:
This may be useful if there are bound constraints on the solution, and these should be enforced prior to
beginning the nonlinear or linear implicit solver algorithm.

This routine is incompatible with the “minimum correction predictor” — option 5 to the routine ARK-
StepSetPredictorMethod(). If both are selected, then ARKStep will override its built-in implicit pre-
dictor routine to instead use option O (trivial predictor).
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5.6.8 Rootfinding function

If a rootfinding problem is to be solved during integration of the ODE system, the user must supply a function of type
ARKRootFn.
typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype *gout, void *user_data)
This function implements a vector-valued function g(¢, y) such that roots are sought for the components g; (¢, y),
1=0,...,nrtfn-1.
Arguments:
* ¢ —the current value of the independent variable.
 y — the current value of the dependent variable vector.

* gout — the output array, of length nrtfn, with components g; (¢, y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to the Se-
tUserData function

Return value:
An ARKRootFn function should return O if successful or a non-zero value if an error occurred (in which
case the integration is halted and ARKODE returns ARK_RTFUNC_FAIL).

Notes:
Allocation of memory for gout is handled within ARKODE.

5.6.9 Jacobian construction (matrix-based linear solvers, ARKStep and MRIStep only)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to ARKStepSet-
LinearSolver() or MRIStepSetLinearSolver(), the user may provide a function of type ARKLsJacFn to pro-
vide the Jacobian approximation or ARKLSLinSysFn to provide an approximation of the linear system A(¢,y) =

M(t) =~ J(t,y).
typedef int (*ARKLsJacFn)(realtype t, N_Vector 'y, N_Vector tfy, SUNMatrix Jac, void *user_data, N_Vector tmpl,
N_Vector tmp2, N_Vector tmp3)

1
This function computes the Jacobian matrix J(¢,y) = —=— (¢, y) (or an approximation to it).

dy
Arguments:
¢t —the current value of the independent variable.
* y — the current value of the dependent variable vector, namely the predicted value of y(¢).
* fy —the current value of the vector f(t,y).

¢ Jac — the output Jacobian matrix.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsJacFn as temporary storage or work space.

Return value:
An ARKLsJacFn function should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKODE will attempt to correct, while ARKLS sets last_flag to ARKLS_JACFUNC_RECVR),
or a negative value if it failed unrecoverably (in which case the integration is halted, ARKStepEvolve ()
or MRIStepEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to ARKLS_JACFUNC_-
UNRECVR).
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Notes:
Information regarding the specific SUNMatrix structure (e.g.~number of rows, upper/lower bandwidth,
sparsity type) may be obtained through using the implementation-specific SUNMatrix interface functions
(see §9 for details).

When using a linear solver of type SUNLINEARSOLVER_DIRECT, prior to calling the user-supplied Jacobian
function, the Jacobian matrix J (¢, y) is zeroed out, so only nonzero elements need to be loaded into Jac.

With the default Newton nonlinear solver, each call to the user’s ARKLsJacFn () function is preceded by a
call to the implicit ARKRhsFn () user function with the same (¢, y) arguments. Thus, the Jacobian function
can use any auxiliary data that is computed and saved during the evaluation of f/(¢,y). In the case of a
user-supplied or external nonlinear solver, this is also true if the nonlinear system function is evaluated prior
to calling the linear solver setup function (see §11.1.4 for more information).

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to access
quantities not in the argument list, including the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKStepGet*
or MRIStepGet* functions listed in §5.2.2.10 or §5.5.2.9. The unit roundoff can be accessed as UNIT_-
ROUNDOFF, which is defined in the header file sundials_types.h.

dense J(t,y): A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an
approximation to the Jacobian matrix J(¢,y) at the point (¢,y). Utility routines and accessor macros for
the SUNMATRIX_DENSE module are documented in §9.3.

banded J (¢, y): A user-supplied banded Jacobian function must load the band matrix Jac with the elements
of the Jacobian J(t,y) at the point (¢,y). Utility routines and accessor macros for the SUNMATRIX_-
BAND module are documented in §9.6.

sparse J(t,y): A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC)
or compressed-sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix J(¢,y) at the
point (¢,y). Storage for Jac already exists on entry to this function, although the user should ensure that
sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient
the user may reallocate the data and index arrays as needed. Utility routines and accessor macros for the
SUNMATRIX_SPARSE type are documented in §9.8.

typedef int (*ARKLsSLinSysFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix A, SUNMatrix M, booleantype jok,
booleantype *jcur, realtype gamma, void *user_data, N_Vector tmpl, N_Vector tmp2, N_Vector tmp3)

This function computes the linear system matrix A(¢, y) = M (t) — vJ(¢,y) (or an approximation to it).
Arguments:

* ¢ —the current value of the independent variable.

* y — the current value of the dependent variable vector, namely the predicted value of y(¢).

* fy — the current value of the vector f(t,y).

* A —the output linear system matrix.

* M — the current mass matrix (this input is NULL if M = I).

e jok —is an input flag indicating whether the Jacobian-related data needs to be updated. The jok argu-
ment provides for the reuse of Jacobian data. When jok = SUNFALSE, the Jacobian-related data should
be recomputed from scratch. When jok = SUNTRUE the Jacobian data, if saved from the previous call
to this function, can be reused (with the current value of gamma). A call with jok = SUNTRUE can only
occur after a call with jok = SUNFALSE.

e jcur —is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

* gamma — the scalar  appearing in the Newton system matrix A = M (t) — vJ (¢, y).
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* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

* tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsLinSysFn as temporary storage or work space.

Return value:
An ARKLsLinSysFn function should return O if successful, a positive value if a recoverable error occurred
(in which case ARKODE will attempt to correct, while ARKLS sets last_flag to ARKLS_JACFUNC_-
RECVR), or a negative value if it failed unrecoverably (in which case the integration is halted, ARKStepE-
volve() or MRIStepEvolve () returns ARK_LSETUP_FAIL and ARKLS sets last_flag to ARKLS_JAC-
FUNC_UNRECVR).

5.6.10 Jacobian-vector product (matrix-free linear solvers, ARKStep and MRIStep only)

When using a matrix-free linear solver module for the implicit stage solves (i.e., a NULL-valued SUNMATRIX argu-
ment was supplied to ARKStepSetLinearSolver () or MRIStepSetLinearSolver (), the user may provide a func-
tion of type ARKLsJacTimesVecFn in the following form, to compute matrix-vector products Jv. If such a function
is not supplied, the default is a difference quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t, N_Vector y, N_Vector fy, void *user_data,
N_Vector tmp)
off

This function computes the product Jv where J(t,y) ~ ——(t,y) (or an approximation to it).

dy
Arguments:
* v — the vector to multiply.
 Jv — the output vector computed.
e t — the current value of the independent variable.
 y —the current value of the dependent variable vector.
* fy —the current value of the vector f(t,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

e tmp — pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value:
The value to be returned by the Jacobian-vector product function should be 0 if successful. Any other
return value will result in an unrecoverable error of the generic Krylov solver, in which case the integration
is halted.

Notes:
If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the argument list. These include the current step size, the error weights, etc. To obtain
these, the user will need to add a pointer to the ark_mem structure to their user_data, and then use the
ARKStepGet* or MRIStepGet* functions listed in §5.2.2.10 or §5.5.2.9. The unit roundoff can be accessed
as UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.
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5.6.11 Jacobian-vector product setup (matrix-free linear solvers, ARKStep and MRIStep
only)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:
typedef int (*ARKLsJacTimesSetupFn)(realtype t, N_Vector 'y, N_Vector fy, void *user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector rou-
tine.
Arguments:
* ¢ —the current value of the independent variable.
 y —the current value of the dependent variable vector.

* fy — the current value of the vector f(t,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

Return value:
The value to be returned by the Jacobian-vector setup function should be O if successful, positive for a
recoverable error (in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes:
Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user function
with the same (¢, y) arguments. Thus, the setup function can use any auxiliary data that is computed and
saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* or MRIStepGet* functions listed in §5.2.2.10 or §5.5.2.9. The unit roundoff can be
accessed as UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

5.6.12 Preconditioner solve (iterative linear solvers, ARKStep and MRIStep only)

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a function
of type ARKLsPrecSolveFn to solve the linear system Pz = r, where P corresponds to either a left or right precon-
ditioning matrix. Here P should approximate (at least crudely) the Newton matrix A(t,y) = M (t) — vJ(t, y), where

o I
M (t) is the mass matrix and J(t,y) = ai(t, y) If preconditioning is done on both sides, the product of the two
Y

preconditioner matrices should approximate A.

typedef int (*ARKLsPrecSolveFn)(realtype t, N_Vector y, N_Vector tfy, N_Vector r, N_Vector z, realtype gamma,
realtype delta, int Ir, void *user_data)

This function solves the preconditioner system Pz = r.
Arguments:
¢ t — the current value of the independent variable.
 y —the current value of the dependent variable vector.
* fy —the current value of the vector f(t,y).

¢ r — the right-hand side vector of the linear system.
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* z —the computed output solution vector.
 gamma — the scalar ~ appearing in the Newton matrix given by A = M (t) — vJ(t,y).

* delta — an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector Res = r — Pz of the system should be made to be less than delta in the weighted

B 1/2

Iy norm, i.e. Z (Res; * ewt;)* < 0, where § = delta. To obtain the N_Vector ewt, call

i=1
ARKStepGetErriWeights() or MRIStepGetErrieights().

 [r — an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

Return value:
The value to be returned by the preconditioner solve function is a flag indicating whether it was successful.
This value should be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

5.6.13 Preconditioner setup (iterative linear solvers, ARKStep and MRIStep only)

If the user’s preconditioner routine requires that any data be preprocessed or evaluated, then these actions need to occur
within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn)(realtype t, N_Vector y, N_Vector ty, booleantype jok, booleantype *jcurPtr,
realtype gamma, void *user_data)
This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.
Arguments:
e t —the current value of the independent variable.
 y —the current value of the dependent variable vector.
* fy —the current value of the vector f(t,y).

e jok — is an input flag indicating whether the Jacobian-related data needs to be updated. The jok ar-
gument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

e jcurPtr —is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set
to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

 gamma — the scalar ~ appearing in the Newton matrix given by A = M (t) — vJ(t,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData() or MRIStepSetUserData().

Return value:
The value to be returned by the preconditioner setup function is a flag indicating whether it was successful.
This value should be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes:
The operations performed by this function might include forming a crude approximate Jacobian, and per-
forming an LU factorization of the resulting approximation to A = M (t) — vJ (¢, ).
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With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the implicit ARKRhsFn user function with the same (¢, y) arguments.
Thus, the preconditioner setup function can use any auxiliary data that is computed and saved during the
evaluation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver,
this is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function
(see §11.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKStepGet*
or MRIStepGet* functions listed in §5.2.2.10 or §5.5.2.9. The unit roundoff can be accessed as UNIT_-
ROUNDOFF, which is defined in the header file sundials_types.h.

5.6.14 Mass matrix construction (matrix-based linear solvers, ARKStep only)

If a matrix-based mass-matrix linear solver is used (i.e., a non-NULL SUNMATRIX was supplied to ARKStepSet-
MassLinearSolver(), the user must provide a function of type ARKLsMassFn to provide the mass matrix approxi-
mation.

typedef int (*ARKLsMassFn)(realtype t, SUNMatrix M, void *user_data, N_Vector tmpl, N_Vector tmp2, N_Vector
tmp3)

This function computes the mass matrix M (¢) (or an approximation to it).
Arguments:

¢ t — the current value of the independent variable.

* M — the output mass matrix.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsMassFn as temporary storage or work space.

Return value:
An ARKLsMassFn function should return 0 if successful, or a negative value if it failed unrecoverably (in
which case the integration is halted, ARKStepEvolve () returns ARK_MASSSETUP_FAIL and ARKLS
sets last_flag to ARKLS_MASSFUNC_UNRECVR).

Notes:
Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see §9 for details).

Prior to calling the user-supplied mass matrix function, the mass matrix M (t) is zeroed out, so only nonzero
elements need to be loaded into M.

dense M (t): A user-supplied dense mass matrix function must load the N by N dense matrix M with an
approximation to the mass matrix M (¢). Utility routines and accessor macros for the SUNMATRIX_-
DENSE module are documented in §9.3.

banded M (t): A user-supplied banded mass matrix function must load the band matrix M with the ele-
ments of the mass matrix M (¢). Utility routines and accessor macros for the SUNMATRIX_BAND module
are documented in §9.6.
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sparse M (t): A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR)
or compressed-sparse-row (CSR) matrix M with an approximation to the mass matrix M (t). Storage for M
already exists on entry to this function, although the user should ensure that sufficient space is allocated in
M to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data

and row index arrays as needed. Utility routines and accessor macros for the SUNMATRIX_SPARSE type
are documented in §9.8.

5.6.15 Mass matrix-vector product (matrix-free linear solvers, ARKStep only)

If a matrix-free linear solver is to be used for mass-matrix linear systems (i.e., a NULL-valued SUNMATRIX argu-
ment was supplied to ARKStepSetMassLinearSolver() in §5.2.1), the user must provide a function of type ARKLs-
MassTimesVecFn in the following form, to compute matrix-vector products M (t) v.

typedef int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t, void *mtimes_data)
This function computes the product M (¢) v (or an approximation to it).
Arguments:
* v — the vector to multiply.
* My — the output vector computed.
¢ t — the current value of the independent variable.

* mtimes_data — a pointer to user data, the same as the mtimes_data parameter that was passed to ARK-
StepSetMassTimes().

Return value:
The value to be returned by the mass-matrix-vector product function should be 0 if successful. Any other

return value will result in an unrecoverable error of the generic Krylov solver, in which case the integration
is halted.

5.6.16 Mass matrix-vector product setup (matrix-free linear solvers, ARKStep only)

If the user’s mass-matrix-times-vector routine requires that any mass matrix-related data be preprocessed or evaluated,
then this needs to be done in a user-supplied function of type ARKLsMassTimesSetupFn, defined as follows:

typedef int (*ARKLsMassTimesSetupFn)(realtype t, void *mtimes_data)

This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Arguments:
* ¢ —the current value of the independent variable.

* mtimes_data — a pointer to user data, the same as the mtimes_data parameter that was passed to ARK-
StepSetMassTimes ().

Return value:

The value to be returned by the mass-matrix-vector setup function should be O if successful. Any other
return value will result in an unrecoverable error of the ARKLS mass matrix solver interface, in which case
the integration is halted.
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5.6.17 Mass matrix preconditioner solve (iterative linear solvers, ARKStep only)

If a user-supplied preconditioner is to be used with a SUNLINEAR solver module for mass matrix linear systems, then
the user must provide a function of type ARKLsMassPrecSolveFn to solve the linear system Pz = r, where P may
be either a left or right preconditioning matrix. Here P should approximate (at least crudely) the mass matrix M (¢).
If preconditioning is done on both sides, the product of the two preconditioner matrices should approximate M (t).
typedef int (*ARKLsMassPrecSolveFn)(realtype t, N_Vector r, N_Vector z, realtype delta, int Ir, void *user_data)

This function solves the preconditioner system Pz = 7.
Arguments:
* ¢ — the current value of the independent variable.
* r — the right-hand side vector of the linear system.
* z —the computed output solution vector.

* delta — an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector Res = r — Pz of the system should be made to be less than delta in the weighted
1/2

n

l5 norm, i.e. Z (Res; * ewti)2 < 0, where § = delta. To obtain the N_Vector ewt, call

i=1
ARKStepGetErrWeights().

 [r — an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData().

Return value:
The value to be returned by the preconditioner solve function is a flag indicating whether it was successful.
This value should be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

5.6.18 Mass matrix preconditioner setup (iterative linear solvers, ARKStep only)

If the user’s mass matrix preconditioner above requires that any problem data be preprocessed or evaluated, then these
actions need to occur within a user-supplied function of type ARKLsMassPrecSetupFn.
typedef int (*ARKLsMassPrecSetupFn)(realtype t, void *user_data)

This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.
Arguments:
¢ t — the current value of the independent variable.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to ARKStepSe-
tUserData().

Return value:
The value to be returned by the mass matrix preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in which case the step
will be retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes:
The operations performed by this function might include forming a mass matrix and performing an incom-
plete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.
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If both this function and a ARKLsMassTimesSetupFn are supplied, all calls to this function will be preceded
by a call to the ARKLsMassTimesSetupFn, so any setup performed there may be reused.

5.6.19 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKODE integrator may be “resized” between integration steps, through
calls to the ARKStepResize (), ERKStepResize (), or MRIStepResize () function. Typically, when performing
adaptive simulations the solution is stored in a customized user-supplied data structure, to enable adaptivity without
repeated allocation/deallocation of memory. In these scenarios, it is recommended that the user supply a customized
vector kernel to interface between SUNDIALS and their problem-specific data structure. If this vector kernel includes
a function of type ARKVecResizeFn to resize a given vector implementation, then this function may be supplied to
ARKStepResize(), ERKStepResize (), or MRIStepResize (), so that all internal ARKODE vectors may be resized,
instead of deleting and re-creating them at each call. This resize function should have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void *user_data)

This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.
Arguments:

* y — the vector to resize.

* ytemplate — a vector of the desired size.

* user_data — a pointer to user data, the same as the resize_data parameter that was passed to ARK-
StepResize(), ERKStepResize(), or MRIStepResize().

Return value:
An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-zero value
otherwise.

Notes:
If this function is not supplied, then ARKODE will instead destroy the vector y and clone a new vector y
off of ytemplate.

5.6.20 Pre inner integrator communication function (MRIStep only)

The user may supply a function of type MRIStepPreInnerFn that will be called before each inner integration to
perform any communication or memory transfers of forcing data supplied by the outer integrator to the inner integrator
for the inner integration.

typedef int (*MRIStepPreInnerFn)(realtype t, N_Vector *f, int num_vecs, void *user_data)

Arguments:
¢ t — the current value of the independent variable.
e f —an N_Vector array of outer forcing vectors.
* num_vecs — the number of vectors in the N_Vector array.
* user_data — the user_data pointer that was passed to MRIStepSetUserData().

Return value:
An MRIStepPrelnnerFn function should return 0 if successful, a positive value if a recoverable error oc-
curred, or a negative value if an unrecoverable error occurred. As the MRIStep module only supports fixed
step sizes at this time any non-zero return value will halt the integration.
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Notes:
In a heterogeneous computing environment if any data copies between the host and device vector data are
necessary, this is where that should occur.

5.6.21 Post inner integrator communication function (MRIStep only)

The user may supply a function of type MRIStepPostInnerFn that will be called after each inner integration to
perform any communication or memory transfers of state data supplied by the inner integrator to the outer integrator
for the outer integration.

typedef int (*MRIStepPostInnerFn)(realtype t, N_Vector 'y, void *user_data)

Arguments:
* ¢ —the current value of the independent variable.
 y — the current value of the dependent variable vector.
* user_data — the user_data pointer that was passed to MRIStepSetUserData().

Return value:
An MRIStepPostInnerFn() function should return O if successful, a positive value if a recoverable error
occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module only supports
fixed step sizes at this time any non-zero return value will halt the integration.

Notes:
In a heterogeneous computing environment if any data copies between the host and device vector data are
necessary, this is where that should occur.

5.6.22 Relaxation function

typedef int (*ARKRelaxFn)(N_Vectory, realtype *r, void *user_data)

When applying relaxation, an ARKRelaxFn() function is required to compute the conservative or dissipative
function £(y).

Arguments:
 y —the current value of the dependent variable vector.
* r —the value of £(y).
* user_data — the user_data pointer that was passed to ARKStepSetUserData().

Return value:
An ARKRelaxFn() function should return O if successful, a positive value if a recoverable error occurred,
or a negative value if an unrecoverable error occurred. If a recoverable error occurs, the step size will be
reduced and the step repeated.
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5.6.23 Relaxation Jacobian function

typedef int (*ARKRelaxJacFn)(N_Vector y, N_Vector J, void *user_data);

When applying relaxation, an ARKRelaxJacFn() function is required to compute the Jacobian &'(y) of the
ARKRelaxFn() £(y).

Arguments:
» y —the current value of the dependent variable vector.
* J — the Jacobian vector £’ (y).
* user_data — the user_data pointer that was passed to ARKStepSetUserData().

Return value:
An ARKRelaxJacFn() function should return O if successful, a positive value if a recoverable error oc-
curred, or a negative value if an unrecoverable error occurred. If a recoverable error occurs, the step size
will be reduced and the step repeated.
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Butcher Table Data Structure

To store the Butcher table defining a Runge—Kutta method ARKODE provides the ARKodeButcherTable type and
several related utility routines. We use the following Butcher table notation (shown for a 3-stage method):

c1| a1 ai2 a13

A C2 | G211 G22 dA23

q| b = c3|az1 azz azgs
b q| b by b3
p| b by b3

where the method and embedding share stage A and abscissa c values, but use their stages z; differently through the
coefficients b and b to generate methods of orders ¢ (the main method) and p (the embedding, typically ¢ = p + 1,
though sometimes this is reversed). ARKodeButcherTable is defined as

typedef ARKodeButcherTableMem *ARKodeButcherTable
where ARKodeButcherTableMem is the structure

typedef struct ARKodeButcherTableMem {

int q;

int p;

int stages;
realtype **A;
realtype *“c;
realtype *b;
realtype *d;

};

where stages is the number of stages in the RK method, the variables q, p, A, ¢, and b have the same meaning as in
the Butcher table above, and d is used to store b.
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6.1 ARKodeButcherTable functions

Table 6.1: ARKodeButcherTable functions

Function name Description

ARKodeButcherTable_LoadERK() Retrieve a given explicit Butcher table by its unique ID
ARKodeButcherTable_LoadERKByName () Retrieve a given explicit Butcher table by its unique name
ARKodeButcherTable_LoadDIRK() Retrieve a given implicit Butcher table by its unique ID
ARKodeButcherTable_LoadDIRKByName() Retrieve a given implicit Butcher table by its unique name
ARKodeButcherTable_Alloc() Allocate an empty Butcher table
ARKodeButcherTable_Create() Create a new Butcher table
ARKodeButcherTable_Copy () Create a copy of a Butcher table
ARKodeButcherTable_Space () Get the Butcher table real and integer workspace size
ARKodeButcherTable_Free() Deallocate a Butcher table
ARKodeButcherTable_Write() Write the Butcher table to an output file
ARKodeButcherTable_CheckOrder () Check the order of a Butcher table

ARKodeButcherTable_CheckARKOrder () Check the order of an ARK pair of Butcher tables

ARKodeButcherTable ARKodeButcherTable_LoadERK (ARKODE_ERKTuableID emethod)

Retrieves a specified explicit Butcher table. The prototype for this function, as well as the integer names for each
provided method, are defined in the header file arkode/arkode_butcher_erk.h. For further information on
these tables and their corresponding identifiers, see §15.

Arguments:

* emethod — integer input specifying the given Butcher table.
Return value:

* ARKodeButcherTable structure if successful.

* NULL pointer if emethod was invalid.

ARKodeButcherTuble ARKodeButcherTable_LoadERKByName (const char *emethod)

Retrieves a specified explicit Butcher table. The prototype for this function, as well as the names for each provided
method, are defined in the header file arkode/arkode_butcher_erk.h. For further information on these tables
and their corresponding names, see §15.

Arguments:
* emethod — name of the Butcher table.
Return value:
* ARKodeButcherTable structure if successful.
* NULL pointer if emethod was invalid or "ARKODE_ERK_NONE".

Notes:
This function is case sensitive.

ARKodeButcherTable ARKodeButcherTable_LoadDIRK(ARKODE _DIRKTableID imethod)

Retrieves a specified diagonally-implicit Butcher table. The prototype for this function, as well as the integer
names for each provided method, are defined in the header file arkode/arkode_butcher_dirk.h. For further
information on these tables and their corresponding identifiers, see §15.

Arguments:

* imethod — integer input specifying the given Butcher table.
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Return value:
e ARKodeButcherTable structure if successful.
* NULL pointer if imethod was invalid.

ARKodeButcherTable ARKodeButcherTable_LoadDIRKByName (const char *imethod)

Retrieves a specified diagonally-implicit Butcher table. The prototype for this function, as well as the names for
each provided method, are defined in the header file arkode/arkode_butcher_dirk.h. For further informa-
tion on these tables and their corresponding names, see §15.

Arguments:
* imethod — name of the Butcher table.
Return value:
* ARKodeButcherTable structure if successful.
* NULL pointer if imethod was invalid or "ARKODE_DIRK_NONE".

Notes:
This function is case sensitive.

ARKodeButcherTable ARKodeButcherTable_Alloc (int stages, booleantype embedded)
Allocates an empty Butcher table.

Arguments:

* stages — the number of stages in the Butcher table.

* embedded —flag denoting whether the Butcher table has an embedding (SUNTRUE) or not (SUNFALSE).
Return value:

* ARKodeButcherTable structure if successful.

* NULL pointer if stages was invalid or an allocation error occurred.

ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p, realtype *c, realtype *A, realtype *b,
realtype *d)

Allocates a Butcher table and fills it with the given values.
Arguments:
* s —number of stages in the RK method.
* g — global order of accuracy for the RK method.
¢ p — global order of accuracy for the embedded RK method.
* ¢ —array (of length s) of stage times for the RK method.

e A — array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

e b —array of coefficients (of length s) defining the time step solution.

* d — array of coefficients (of length s) defining the embedded solution.
Return value:

* ARKodeButcherTable structure if successful.

* NULL pointer if stages was invalid or an allocation error occurred.
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Notes:
If the method does not have an embedding then d should be NULL and p should be equal to zero.

Warning: When calling this function from Fortran, it is important to note that A is expected to be in
row-major ordering.

ARKodeButcherTable ARKodeButcherTable_Copy (ARKodeButcherTable B)
Creates copy of the given Butcher table.

Arguments:
* B — the Butcher table to copy.

Return value:
* ARKodeButcherTable structure if successful.
* NULL pointer an allocation error occurred.

void ARKodeButcherTable_Space (ARKodeButcherTable B, sunindextype *liw, sunindextype *1lrw)

Get the real and integer workspace size for a Butcher table.
Arguments:
* B — the Butcher table.
* lenrw — the number of realtype values in the Butcher table workspace.
* [eniw — the number of integer values in the Butcher table workspace.
Return value:
e ARK SUCCESS if successful.
* ARK_MEM_NULL if the Butcher table memory was NULL.
void ARKodeButcherTable_Free (ARKodeButcherTable B)

Deallocate the Butcher table memory.
Arguments:
* B — the Butcher table.

void ARKodeButcherTable_Write(ARKodeButcherTuble B, FILE *outfile)
Write the Butcher table to the provided file pointer.

Arguments:
* B — the Butcher table.
* outfile — pointer to use for printing the Butcher table.

Notes:
The outfile argument can be stdout or stderr, or it may point to a specific file created using fopen.

int ARKodeButcherTable_CheckOrder (ARKodeButcherTable B, int *q, int *p, FILE *outfile)

Determine the analytic order of accuracy for the specified Butcher table. The analytic (necessary) conditions are
checked up to order 6. For orders greater than 6 the Butcher simplifying (sufficient) assumptions are used.

Arguments:
¢ B —the Butcher table.

* g — the measured order of accuracy for the method.
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 p — the measured order of accuracy for the embedding; O if the method does not have an embedding.
* outfile — file pointer for printing results; NULL to suppress output.

Return value:
* 0 - success, the measured vales of g and p match the values of g and p in the provided Butcher tables.

e | — warning, the values of ¢ and p in the provided Butcher tables are lower than the measured values,
or the measured values achieve the maximum order possible with this function and the values of ¢ and
p in the provided Butcher tables table are higher.

¢ -] —failure, the values of ¢ and p in the provided Butcher tables are higher than the measured values.
e -2 —failure, the input Butcher table or critical table contents are NULL.

Notes:
For embedded methods, if the return flags for ¢ and p would differ, failure takes precedence over warning,
which takes precedence over success.

int ARKodeButcherTable_CheckARKOrder (ARKodeButcherTable B1, ARKodeButcherTable B2, int *q, int *p,
FILE *outfile)

Determine the analytic order of accuracy (up to order 6) for a specified ARK pair of Butcher tables.
Arguments:
* BI — a Butcher table in the ARK pair.
* B2 — a Butcher table in the ARK pair.
* g — the measured order of accuracy for the method.
¢ p — the measured order of accuracy for the embedding; O if the method does not have an embedding.
* outfile — file pointer for printing results; NULL to suppress output.
Return value:
* 0 —success, the measured vales of g and p match the values of g and p in the provided Butcher tables.

» | —warning, the values of g and p in the provided Butcher tables are lower than the measured values,
or the measured values achieve the maximum order possible with this function and the values of ¢ and
p in the provided Butcher tables table are higher.

e -] —failure, the input Butcher tables or critical table contents are NULL.

Notes:
For embedded methods, if the return flags for ¢ and p would differ, warning takes precedence over success.
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SPRK Method Table Structure

To store the pair of Butcher tables defining a SPRK method of order ¢ ARKODE provides the ARKodeSPRKTable type
and several related utility routines. We use the following notation

C1 0 e 0 0 61 dl s 0 0
calar 0 oo 1A e | a1 a :
c A 2 1 . é A 2 1 2
b : : : : b :
Cs | Q1 -+ QAg—1 0 és dl dg ds
ay - Gs—1  As a; G as

where B and B contain the coefficients for the explicit and diagonally implicit tables, respectively. We use a compact
storage of these coefficients in terms of two arrays, one for a values and one for a values. The abscissae (only relevant
for non-autonomous problems) are computed dynamically as ¢; = > 7_, a; and é; = > _7_, a;, respectively [32, 52].
The ARKodeSPRKTable type is a pointer to the ARKodeSPRKTableMem structure:

typedef ARKodeSPRKTableMem *ARKodeSPRKTable

type ARKodeSPRKTableMem
Structure representing the SPRK method that holds the method coefficients.

int q
The method order of accuracy.

int stages
The number of stages.

sunrealtype *a
Array of coefficients that generate the explicit Butcher table. a[i] is the coefficient appearing in column
i+1.

sunrealtype *ahat
Array of coefficients that generate the diagonally-implicit Butcher table. ahat [i] is the coeflicient appear-
ing in column i.
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7.1 ARKodeSPRKTable functions

Table 7.1: ARKodeSPRKTable functions

Function name Description

ARKodeSPRKTable_Alloc() Allocate an empty table

ARKodeSPRKTable_Load() Load SPRK method using an identifier
ARKodeSPRKTable_LoadByName() Load SPRK method using a string version of the identifier
ARKodeSPRKTable_Create() Create a new table

ARKodeSPRKTable_Copy () Create a copy of a table

ARKodeSPRKTable_Space() Get the table real and integer workspace size
ARKodeSPRKTable_Free() Deallocate a table

ARKodeSPRKTuble ARKodeSPRKTable_Create (int stages, int q, const sunrealtype *a, const sunrealtype *ahat)
Creates and allocates an ARKodeSPRKTable with the specified number of stages and the coefficients provided.

Parameters
* stages — The number of stages.
e q - The order of the method.
* a— An array of the coefficients for the a table.
» ahat — An array of the coefficients for the ahat table.

Returns
ARKodeSPRKTable for the loaded method.

ARKodeSPRKTable ARKodeSPRKTable_Alloc (int stages)
Allocate memory for an ARKodeSPRKTable with the specified number of stages.

Parameters
» stages — The number of stages.

Returns
ARKodeSPRKTable for the loaded method.

ARKodeSPRKTable ARKodeSPRKTable_Load (ARKODE_SPRKMethodID id)
Load the ARKodeSPRKTab1e for the specified method ID.

Parameters
e id — The ID of the SPRK method, see Symplectic Partitioned Butcher tables.

Returns
ARKodeSPRKTable for the loaded method.

ARKodeSPRKTuble ARKodeSPRKTable_LoadByName (const char *method)
Load the ARKodeSPRKTab1le for the specified method name.

Parameters
* method — The name of the SPRK method, see Symplectic Partitioned Butcher tables.

Returns
ARKodeSPRKTable for the loaded method.
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ARKodeSPRKTuble ARKodeSPRKTable_Copy (ARKodeSPRKTuble sprk_table)
Create a copy of the ARKodeSPRKTable.

Parameters
» sprk_table — The ARKodeSPRKTable to copy.

Returns
Pointer to the copied ARKodeSPRKTable.

void ARKodeSPRKTable_Write(ARKodeSPRKTable sprk_table, FILE *outfile)
Write the ARKodeSPRKTable out to the file.

Parameters
e sprk_table — The ARKodeSPRKTable to write.
» outfile — The FILE that will be written to.

void ARKodeSPRKTable_Space (ARKodeSPRKTable sprk_table, sunindextype *liw, sunindextype *lrw)
Get the workspace sizes required for the ARKodeSPRKTable.

Parameters
e sprk_table — The ARKodeSPRKTable.
» liw — Pointer to store the integer workspace size.
* 1rw - Pointer to store the real workspace size.

void ARKodeSPRKTable_Free (ARKodeSPRKTuble sprk_table)
Free the memory allocated for the ARKodeSPRKTable.

Parameters
e sprk_table — The ARKodeSPRKTable to free.

int ARKodeSPRKTable_ToButcher (ARKodeSPRKTable sprk_table, ARKodeButcherTable *a_ptr,
ARKodeButcherTable *b_ptr)

Convert the ARKodeSPRKTable to the Butcher table representation.
Parameters
e sprk_table — The ARKodeSPRKTable.
* a_ptr — Pointer to store the explicit Butcher table.

* b_ptr — Pointer to store the diagonally-implicit Butcher table.

7.1. ARKodeSPRKTable functions
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Chapter 8

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

8.1 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_-
Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users can
provide a custom implementation of the NVECTOR module or use one provided within SUNDIALS. The generic op-
erations are described below. In the sections following, the implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the vector, and an ops field pointing to a structure with generic vector operations.
The type N_Vector is defined as

typedef struct _generic_N_Vector *N_Vector
and the generic structure is defined as

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;
1

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector oper-
ations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid) (N_Vector);

(continues on next page)
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(continued from previous page)

N_Vector (*nvclone) (N_Vector);

N_Vector (*nvcloneempty) (N_Vector) ;

void (*nvdestroy) (N_Vector);

void (*nvspace) (N_Vector, sunindextype *, sunindextype *);

realtype® (*nvgetarraypointer) (N_Vector);

realtype* (*nvgetdevicearraypointer) (N_Vector) ;

void (*nvsetarraypointer) (realtype *, N_Vector);

void* (*nvgetcommunicator) (N_Vector) ;

sunindextype (*nvgetlength) (N_Vector);

sunindextype (*nvgetlocallength) (N_Vector);

void (*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst) (realtype, N_Vector);

void (*nvprod) (N_Vector, N_Vector, N_Vector);

void (*nvdiv) (N_Vector, N_Vector, N_Vector);

void (*nvscale) (realtype, N_Vector, N_Vector);

void (*nvabs) (N_Vector, N_Vector);

void (*nvinv) (N_Vector, N_Vector);

void (*nvaddconst) (N_Vector, realtype, N_Vector);

realtype (*nvdotprod) (N_Vector, N_Vector);

realtype (*nvmaxnorm) (N_Vector) ;

realtype (*nvwrmsnorm) (N_Vector, N_Vector);

realtype (*nvwrmsnormmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvmin) (N_Vector);

realtype (*nvwl2norm) (N_Vector, N_Vector);

realtype (*nvllnorm) (N_Vector);

void (*nvcompare) (realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient) (N_Vector, N_Vector);

int (*nvlinearcombination) (int, realtype *, N_Vector *, N_Vector);

int (*nvscaleaddmulti) (int, realtype *, N_Vector, N_Vector *, N_Vector *);

int (*nvdotprodmulti) (int, N_Vector, N_Vector *, realtype *);

int (*nvlinearsumvectorarray) (int, realtype, N_Vector *, realtype,
N_Vector *, N_Vector *);

int (*nvscalevectorarray) (int, realtype *, N_Vector *, N_Vector *);

int (*nvconstvectorarray) (int, realtype, N_Vector *);

int (*nvwrmsnomrvectorarray) (int, N_Vector *, N_Vector *, realtype *);

int (*nvwrmsnomrmaskvectorarray) (int, N_Vector *, N_Vector *, N_Vector,

realtype *);
int (*nvscaleaddmultivectorarray) (int, int, realtype *, N_Vector *,
N_Vector **, N_Vector **);
int (*nvlinearcombinationvectorarray) (int, int, realtype *, N_Vector **,
N_Vector *);

realtype (*nvdotprodlocal) (N_Vector, N_Vector);

realtype (*nvmaxnormlocal) (N_Vector) ;

realtype (*nvminlocal) (N_Vector);

realtype (*nvllnormlocal) (N_Vector);

booleantype (*nvinvtestlocal)(N_Vector, N_Vector);

booleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsumlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal (N_Vector, N_Vector, N_Vector);

(continues on next page)
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(continued from previous page)

int (*nvdotprodmultilocal) (int, N_Vector, N_Vector *, realtype *);
int (*nvdotprodmultiallreduce) (int, N_Vector, realtype *);

int (*nvbufsize) (N_Vector, sunindextype *);

int (*nvbufpack) (N_Vector, void*);

int (*nvbufunpack) (N_Vector, void*);

e

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z 4+ cx for vectors x and z and a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§8.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §8.2.2,
§8.2.3,§8.2.4, §8.2.5, and §8.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §8.2.2 and §8.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §8.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANY VECTOR object
(see §8.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§8.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §8.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

8.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects — these functions are particularly useful for Fortran users to utilize the NVECTOR_MANY VECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCIloneVectorArray () and N_VCloneVectorArrayEmpty () create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray (int count, N_Vector w)

Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).

Arguments:
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e count — number of N_Vector objects to create.
* w— template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty (int count, N_Vector w)

Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:
* count — number of N_Vector objects to create.
* w—template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray (N_Vector *vs, int count)

Destroys an array of count N_Vector objects.
Arguments:
e vs — N_Vector array to destroy.
e count — number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy () operation.

If vs was allocated using N_VCIloneVectorArray () then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCIloneVectorArrayEmpty () then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray (), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray (), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray (int count)

Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.
Arguments:

* count — length of desired N_Vector array.
Return value:

* pointer to a new N_Vector array on success.

e NULL pointer on failure.
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N_Vector *N_VGetVecAtIndexVectorArray (N_Vector *vs, int index)

Accesses the N_Vector at the location index within the N_Vector array vs.

Arguments:

* vs — N_Vector array.

¢ index — desired N_Vector to access from within vs.
Return value:

* pointer to the indexed N_Vector on success.

* NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray (N Vector *vs, int index, N_Vector w)

Sets a pointer to w at the location index within the vector array vs.
Arguments:
* vs — N_Vector array.
* index — desired location to place the pointer to w within vs.
* w— N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

8.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

Specify the content field of the N_Vector structure.

Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty () and N_VCopyOps (). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty ()

This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the
operations structure to NULL.
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Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty (N_Vector v)

This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:
e v —an N_Vector object

int N_VCopyOps (N_Vector w, N_Vector V)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:
e w — the vector to copy operations from
* v —the vector to copy operations to

Return value: If successful, this function returns 0. If either of the inputs are NULL or the ops structure of either
input is NULL, then is function returns a non-zero value.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration and shown
in Table 8.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_NVEC_CUSTOM
identifier.

Table 8.1: Vector Identifications associated with vector kernels supplied

with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAIJA vector 9
SUNDIALS NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “Many Vector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled ‘“Many Vector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15
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8.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§8.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin() and N_VMinLocal () should return the minimum of all real components of the vector, i.e., m =
min real(x;).
0<i<n (1)

e N_VConst () (and similarly N_VConstVectorArray ()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., z; = ¢+ 05 for 0 <7 < n.

e N_VAddConst () should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

e N_VWrmsNorm(), N_VWrmsNormMask (), N_VWSqrSumLocal () and N_VWSqrSumMaskLocal () should assume
that all entries of the weight vector w and the mask vector id are real-valued.

e N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current realtype, this routine should be set to NULL in the custom NVECTOR imple-
mentation.

e N_VCompare(), N_VConstrMask(), N_VMinQuotient (), N_VConstrMaskLocal() and N_VMinQuotient-
Local () are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §10.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Similarly, although both the SUNNonlinearSolver_Newton and SUNNonlinearSolver_FixedPoint modules may be
used with any of the IVP solvers (CVODE(S), IDA(S) and ARKODE) for complex-valued problems, the Anderson-
acceleration option with SUNNonlinearSolver_FixedPoint cannot be used due to its reliance on N_VDotProd(). By
this same logic, the Anderson acceleration feature within KINSOL will also not work with complex-valued vectors.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare (), N_VConstrMask (), N_VMinQuotient (), N_VCon-
strMaskLocal () and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_£2003. £90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod. £90.
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8.2 Description of the NVECTOR operations

8.2.1 Standard vector operations
The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these

operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N Vector w)

Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in Table 8.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone (N _Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)

Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace (N_Vector v, sunindextype *lrw, sunindextype *liw)

Returns storage requirements for the N_Vector v:
¢ [rw contains the number of realtype words
* [iw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:
N_VSpace(nvSpec, &lrw, &liw);

realtype *N_VGetArrayPointer (N_Vector v)

Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in the
N_Vector is a contiguous array of realtype and is accesible from the CPU.
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This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

realtype *N_VGetDeviceArrayPointer (N_Vector v)

Returns a device pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data
in N_Vector is a contiguous array of realtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer (realtype *vdata, N_Vector v)

Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes that the
internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

N_VSetArrayPointer(vdata,v);

void *N_VGetCommunicator (N Vector v)

Returns a pointer to the MPI_Comm object associated with the vector (if applicable). For MPI-unaware vector
implementations, this should return NULL.

Usage:

commptr = N_VGetCommunicator(v);

sunindextype N_VGetLength(N_Vector v)

Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:
global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength (N_Vector v)

Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer () or N_VGetDeviceArrayPointer().

Usage:

local_length = N_VGetLocalLength(v);

void N_VLinearSum(realtype a, N_Vector X, realtype b, N_Vector y, N_Vector z)

Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:
zi=axr;+by;, 1=0,...,n—1.

The output vector z can be the same as either of the input vectors (x or y).
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Usage:

N_VLinearSum(a, x, b, y, 2);

void N_VConst (realtype ¢, N_Vector z)

Sets all components of the N_Vector z to realtype c:

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector'y, N_Vector z)

Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:
zi =%y, 1=0,...,n—1.
Usage:

N_VProd(x, y, 2);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

=T =0, n—1.
Yi
The y; may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.
Usage:

N_VDiv(x, y, z);

void N_VScale (realtype ¢, N_Vector x, N_Vector z)

Scales the N_Vector x by the realtype scalar ¢ and returns the result in z:
zi=cx;, 1=0,...,n—1.
Usage:

N_VScale(c, x, z);

void N_VAbs (N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:
zi=|z], i=0,...,n—1

Usage:

N_VAbs(x, z);
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void N_VInv(N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

zi=—, 1=0,...,n—1.
X

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:
N_VInv(x, z);
void N_VAddConst (N_Vector X, realtype b, N_Vector z)
Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:
zi=x;+b, 1=0,...,n—1.
Usage:
N_VAddConst(x, b, z);

realtype N_VDotProd (N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

n—1
i=0
Usage:
d = N_VDotProd(x, y);
realtype N_VMaxNorm (N_Vector X)
Returns the value of the [, norm of the N_Vector x:
m = max |z;|.
0<i<n
Usage:
m = N_VMaxNorm(x);

realtype N_VWrmsNorm(N_Vector x, N_Vector w)

Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector w:

m= (i:(:mw,P) /n

i=0

Usage:
m = N_VWrmsNorm(x, w);

realtype N_VWrmsNormMask (N_Vector x, N_Vector w, N_Vector id)

Returns the weighted root mean square norm of the N_Vector x with realtype weight vector w built using only
the elements of x corresponding to positive elements of the N_Vector id:

m= (Z(xlwiH(zdz)F) /n,

=0

8.2. Description of the NVECTOR operations 343



User Documentation for ARKODE, v5.6.0

1 >0
where H (o) = “ .
0 <0
Usage:
m = N_VWrmsNormMask(x, w, id);
realtype N_VMin(N_Vector X)

Returns the smallest element of the N_Vector x:

m = min x;.
0<i<n

Usage:

m = N_VMin(x);

realtype N_VW12Norm (N_Vector X, N_Vector w)
Returns the weighted Euclidean /5 norm of the N_Vector x with realtype weight vector w:

Usage:
m = N_VWL2Norm(x, w);

realtype N_VLINorm(N_Vector x)
Returns the /1 norm of the N_Vector x:

Usage:
m = N_VL1Norm(x);

void N_VCompare (realtype ¢, N_Vector X, N_Vector z)

Compares the components of the N_Vector x to the realtype scalar ¢ and returns an N_Vector z such that for
all0 <17 < n,

1.0 if|z] > ¢,
z; = .
’ 0.0 otherwise
Usage:
N_VCompare(c, x, z);
booleantype N_VInvTest (N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:
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t = N_VInvTest(x, z);

booleantype N_VConstrMask (N_Vector ¢, N_Vector X, N_Vector m)

Performs the following constraint tests based on the values in ¢;:

€Ty > 0 if C; = 2,
r, < 0 if ¢ =-2,
z; < 0 if ¢ =-1.

There is no constraint on x; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

t = N_VConstrMask(c, x, m);

realtype N_VMinQuotient (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

num;
min ———.
0<i<n denom;
A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL (defined

in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotient (num, denom) ;

8.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.
int N_VLinearCombination(int nv, realtype *c, N_Vector *X, N_Vector z)

This routine computes the linear combination of nv vectors with n elements:

nv—1

Zi = E CiTjq, iZO,...,TL—l,
Jj=0

where c is an array of nv scalars, x; is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns 0 for
success and a non-zero value otherwise.

Usage:

retval = N_VLinearCombination(nv, c, X, z);
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int N_VScaleAddMulti (int nv, realtype *c, N_Vector x, N_Vector *Y, N_Vector *Z.)

This routine scales and adds one vector to nv vectors with n elements:
Zji = ¢j%i +Yji Jj=0,...,nv—1 1=0,...,n—1,

where ¢ is an array of scalars, x is a vector, y; is a vector in the vector array Y, and z; is an output vector in the
vector array Z. The operation returns 0 for success and a non-zero value otherwise.

Usage:

retval = N_VScaleAddMulti(av, c, x, Y, Z);

int N_VDotProdMulti (int nv, N_Vector x, N_Vector *Y, realtype *d)

This routine computes the dot product of a vector with nv vectors having n elements:

n—1
dJ:leyj’“ j:O,...7’I’L’l}—17
1=0

where d is an array of scalars containing the computed dot products, x is a vector, and y; is a vector the vector
array Y. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VDotProdMulti(nv, x, Y, d);

8.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

int N_VLinearSumVectorArray (int nv, realtype a, N_Vector X, realtype b, N_Vector *Y, N_Vector *Z)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:
zji=axj; +byj;, 1=0,...,n—-1 7=0,...,nv—1,

where a and b are scalars, x; and y; are vectors in the vector arrays X and Y respectively, and z; is a vector in
the output vector array Z. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

int N_VScaleVectorArray (int nv, realtype *c, N_Vector *X, N_Vector *7.)

This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

zj; =cjzj;, t=0,...,n—1 57=0,...,nv—1,

where c is an array of scalars, x; is a vector in the vector array X, and z; is a vector in the output vector array Z.
The operation returns O for success and a non-zero value otherwise.

Usage:
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retval = N_VScaleVectorArray(nv, c, X, Z);

int N_VConstVectorArray (int nv, realtype c, N_Vector *Z)

This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:
zji=c¢, 1=0,....n—=1 j=0,...,nv—1,

where c is a scalar and z; is a vector in the vector array Z. The operation returns 0 for success and a non-zero

value otherwise.

Usage:

retval = N_VConstVectorArray(nv, c, Z);

int N_VWrmsNormVectorArray (int nv, N_Vector ¥*X, N_Vector *W, realtype *m)

This routine computes the weighted root mean square norm of each vector in a vector array:

n—1 1/2

1 2 .
= (G L ) =0

where z; is a vector in the vector array X, w; is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

int N_VWrmsNormMaskVectorArray (int nv, N_Vector *X, N_Vector ¥*W, N_Vector id, realtype *m)

This routine computes the masked weighted root mean square norm of each vector in a vector array:

n—1 1/2

1
m;= |- Z (acj,iwj,iH(idi))2 , j=0,...,nv—1,
i=0

where H (id;) = 1if id; > 0 and is zero otherwise, x; is a vector in the vector array X, w; is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns O for success and a non-zero value otherwise.

Usage:
retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

int N_VScaleAddMultiVectorArray (int nv, int nsum, realtype *c, N_Vector *X, N_Vector **YY, N_Vector **77.)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:
Zkji = CkTji + Yk i, =0,...,n—1 j=0,...,nv—-1, k=0,...,nsum—1

where c is an array of scalars, x; is a vector in the vector array X, ¥, ; is a vector in the array of vector arrays Y7,
and z;, ; is an output vector in the array of vector arrays ZZ. The operation returns 0 for success and a non-zero
value otherwise.

Usage:

retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);
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int N_VLinearCombinationVectorArray (int nv, int nsum, realtype *c, N_Vector **XX, N_Vector *Z.)

This routine computes the linear combination of nsum vector arrays containing nv vectors:

nsum—1

Zji = E kT i, t=0,...,n—1 57=0,...,nv—1,
k=0

where c is an array of scalars, x, ; is a vector in array of vector arrays XX, and z; ; is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

8.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

realtype N_VDotProdLocal (N_Vector x, N_Vector y)

This routine computes the MPI task-local portion of the ordinary dot product of x and y:
Nlocal —

1
d= Yz,
i=0

where 1,¢4; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

realtype N_VMaxNormLocal (N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m= max |z,
0<i<niocal

where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal (x);

realtype N_VMinLocal (N_Vector X)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m= min z;,
0<i<Niocal

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:
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m = N_VMinLocal(x);

realtype N_VL1NormLocal (N_Vector x)
This routine computes the MPI task-local portion of the /; norm of the N_Vector x:

Niocal —1

i=0

where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

n = N_VL1NormLocal (x);

realtype N_VWSqrSumLocal (N_Vector x, N_Vector w)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

Niocal —1

s= > (zw)

i=0
where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

realtype N_VWSqrSumMaskLocal (N_Vector x, N_Vector w, N_Vector id)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

Niocal —1
m= > (wawH(id;))?
i=0
where
1
H(a) = a>0
0 <0

and nyeeq; corresponds to the number of components in the vector on this MPI task (or njycq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqgrSumMaskLocal(x, w, id);

booleantype N_VInvTestLocal (N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

1.
zi=—,1=0,...,M0ocat — 1
Ty
where 1,4 corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are

nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:
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t = N_VInvTestLocal (x);

booleantype N_VConstrMaskLocal (N_Vector ¢, N_Vector X, N_Vector m)

Performs the following constraint tests based on the values in ¢;:

€Ty > 0 if C; = 2,
r, < 0 if ¢ =-2,
z; < 0 if ¢ =-1.

for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

realtype N_VMinQuotientLocal (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by term-wise dividing num; by denom;, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotientLocal (num, denom);

8.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

int N_VDotProdMultiLocal (int nv, N_Vector x, N_Vector *Y, realtype *d)

This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors y;:

Niocal —1
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where d is an array of scalars containing the computed dot products, x is a vector, y; is a vector in the vector array
Y, and nj,cq; corresponds to 