
A guide to LuaLATEX

Manuel Pégourié-Gonnard <mpg@elzevir.fr>

November 11, 2010

This document is a map, or touristic guide, for the new world of LuaLATEX.1 The
intended audience ranges from complete newcomers (with a working knowledge
of conventional LATEX) to package developers. This guide is intended to be compre-
hensive in the following sense: it contains pointers to all relevant sources, gathers
information that is otherwise scattered, and adds introductory material.

Feedback and suggestions for improvement are most welcome. This document
is work in progress; thanks for your comprehension and patience.

1 Introduction 2
1.1 Just what is LuaLATEX? . 2
1.2 Switching from LATEX to LuaLATEX . 3
1.3 A Lua-in-TEX primer . 4
1.4 Other things you should know . 6

2 Essential packages and practices 7
2.1 User-level . 7
2.2 Developer-level . 7

3 Other packages 9
3.1 User-level . 9
3.2 Developer-level . 10

4 The luatex and lualatex formats 11

5 Things that just work, partially work, or don’t work (yet) 12
5.1 Just working . 12
5.2 Partially working . 13
5.3 Not working (yet) . 14

1Though focusing on LuaLATEX, it includes relevant information about LuaTEX with the Plain format, too.

1

mailto:mpg@elzevir.fr

1 Introduction

1.1 Just what is LuaLATEX?

To answer this question, we need to mention a few details about the TEX world that you may
usually ignore: the difference between an engine and a format. An engine is an actual computer
program, while a format is a set of macros executed by an engine, usually preloaded when the
engine is invoked with a particular name.

Actually, a format is more or less like a document class or a package, except it is associated
with a particular command name. Imagine there is a command latex-article that would do
the same as latex, except you wouldn’t need to say \documentclass{article} at the begin-
ning of your file. Similarly, in current distributions, the command pdflatex is the same as
the command pdftex except that you don’t need to put the instructions to load LATEX at the
beginning of your source file. This is convenient, and slightly more efficient too.

Formats are great because they implement powerful commands using the basic tools an
engine provides. However the power of the format is sometimes limited by the engine’s tools
set, so people started developing more powerful engines so that other people can implement
even more powerful formats (or packages). The most famous engines now (except the original
TEX) are pdfTEX, X ETEX and LuaTEX.

To further complicate the picture, the original TEX engine produced only DVI files, while
its successors may (also) produce PDF file. Each command in your system corresponds to a
particular engine with a particular format and a particular output mode. The following table
summarizes this: rows are indexed by format, columns by engine, and in each cell the first line
is the command for this engine with this format in DVI mode, and the second for the same
PDF mode.

TEX pdfTEX X ETEX LuaTEX

Plain
tex

(none)
etex

pdftex

(none)
xetex

dviluatex

luatex

LATEX
(none)
(none)

latex

pdflatex

(none)
xelatex

dvilualatex

lualatex

We can now answer the title question: LuaLATEX is the LuaTEX engine with the LATEX format.
Well, this answer isn’t very satisfying if you don’t know what LuaTEX and LATEX are.

As you probably know, LATEX is the general framework in which documents begin with
\documentclass, packages are loaded with \usepackage, fonts are selected in a clever way
(so that you can switch to boldface while preserving italics), pages are build with complicated
algorithms including support for headers, footers, footnotes, margin notes, floating material,
etc. This mostly doesn’t change with LuaLATEX, but new and more powerful packages are avail-
able to make parts of the system work in a better way.

So, what’s LuaTEX? Short version: the hottest TEX engine right now! Long version: It is
the designated successor of pdfTEX and includes all of its core features: direct generation of
PDF files with support for advanced PDF features and micro-typographic enhancements to
TEX typographic algorithms. The main new features of LuaTEX are:

2

1. Native support of Unicode, the modern standard for character classification and encod-
ing, supporting all characters in the world, from English to traditional Chinese through
Arabic, including a lot of mathematical (or otherwise specialised) symbols.

2. Inclusion of Lua as an embedded scripting language (see section 1.3 for details).

3. A lot of wonderful Lua libraries, including:

• fontloader, supporting modern font formats such as TrueType and OpenType;

• font, allowing advanced manipulation of the fonts from within the document;

• mplib, an embedded version of the graphic program MetaPost;

• callback, providing hooks into parts of the TEX engine that were previously inac-
cessible to the programmer;

• utility libraries for manipulating images, pdf files, etc.

Some of these features, such as Unicode support, directly impact all documents, while oth-
ers merely provide tools that package authors will use to provide you with more powerful
commands and other enhancements.

1.2 Switching from LATEX to LuaLATEX

As the previous section explains, LuaLATEX is mostly like LATEX, with a few differences, andmore
powerful packages and tools available. Here we present an absolute minimum you should
know to produce a document with LuaLATEX, while the rest of the document provides more
details about the available packages.

There are only three differences:

1. Don’t load inputenc, just encode your source in UTF-8.

2. Don’t load fontenc, but load fontspec.

3. Don’t use any package that changes the fonts, but use fontspec’s commands instead.

So, you only need to get familiar with fontspec, which is easy: select the main (serif) font
with \setmainfont, the sans serif font with \setsansfont and the mono-spaced (typewriter)
font with \setmonofont. The argument to these commands is the human-friendly name of
the font, for example Latin Modern Roman rather than ec-lmr10. You probably want to use
\defaultfontfeatures{Ligatures=TeX} before these commands to keep the usual TEX substi-
tutions (such as --- for an em-dash) working.

The good news is: you can directly access any font on your operating system (in addition
to those of your TEX distribution) including TrueType and OpenType fonts and have access to
their most advanced features. It means it is now easy to install for use with LuaLATEX any mod-
ern font you may download or purchase from an editor and benefit from their full potential.

Now for the bad news: it is not always easy to get a list of all available fonts. UnderWindows
with TEXLive, the command-line tool fc-list lists them all, but is not very friendly. Under
Mac OS X, the Fontbook application lists the fonts of your system, but not those of your TEX

3

distribution. Same with fc-list on Linux. More bad news: it is not easy to access your old
fonts that way. Happily, more fonts are available in modern formats every day (well, month
or year, actually, if you count only good fonts).
En passant, let’s mention that the content of this section so far also holds for X ELATEX, that is,

LATEX over X ETEX. Indeed, X ETEX shares two of the essential features of LuaTEX: native Unicode
and support for modern font formats (but doesn’t have the other features of LuaTEX; on the
other hand, it is more stable right now). Though their implementations concerning fonts are
vastly different, fontspec manages to offer a mostly unified font interface for both X ELATEX and
LuaLATEX.

So, to benefit from the new features of LuaTEX, you must drop a few parts of the old world,
namely the fonts that are not available in a modern format (and also the liberty to encode your
source how you want, but UTF-8 is so much superior that this one hardly counts). The package
luainputenc provides various trade-offs that allow you to regain these parts2 possibly at the
expense of loosing real Unicode support.

That’s all you need to know to start producing documents with LuaLATEX. I recommend you
have a look at the fontspec manual and actually try to compile a small document using funny
fonts. You can then skim over the rest of this document as you wish. Section 5 lists all the
other differences between conventional LATEX and LuaLATEX that I’m aware of.

1.3 A Lua-in-TEX primer

Lua is a nice, small language, obviously less surprising and much easier to learn than TEX as
a programming language. The essential reference is the very readable book Programming in
Lua, whose first edition is freely available online. For a quick start, I recommend you read
chapters 1 to 5 and have a quick glance at part 3. Note that all the libraries mentioned in
chapter 3 are included in LuaTEX, but the os library is restricted for security reasons.

Depending on your programming culture, you may be directly interested in the rest of part 1
and part 2 which present more advanced features of the language, but part 4 is useless in a
LuaTEX context, unless of course you want to hack LuaTEX itself. Finally, the Lua reference
manual is available online in various languages and comes with a handy index.

Now, let’s turn to Lua in LuaTEX. The main way to execute Lua code from the TEX end is the
\directlua command, which takes arbitrary Lua code as an argument. Conversely, you can
pass information from Lua to TEX with tex.sprint.3 For example,

the standard approximation $\pi = \directlua{tex.sprint(math.pi)}$

prints “the standard approximation π = 3.1415926535898” in your document. See how easy
it is to mix TEX and Lua?

Actually, there are a few gotchas. Let’s look at the Lua to TEX way first, it’s the simplest
(since it’s more Lua than TEX). If you look at the LuaTEX manual, you’ll see there is another
function with a simpler name, tex.print, to pass information this way. It works by virtually

2While the name suggests it is only about input encodings, the details of LATEX’s font encoding implementation
imply this package is needed (and works) for old fonts too.

3The name probably means “string print” as opposed to “run very fast for a short period of time.”

4

http://www.lua.org/pil/
http://www.lua.org/manual/

inserting a full line into your TEX source, whose contents are its argument. In case you didn’t
know, TEX does all kinds of nasty4 things with full lines of the source, like ignoring spaces
at the beginning and end of line and appending an end-of-line character. Most of the time,
you don’t want this to happen, so I recommend using tex.sprint which virtually inserts its
argument in the current line, so is much more predictable.

If you’re enough of a TEXnician to know about catcodes, you’ll be happy to know that
tex.print and its variants give you nearly full control over the catcodes used for tokeniz-
ing the argument, since you can specify a catcode table as the first argument. You’ll probably
want to learn about catcode tables (currently 2.7.6 in the LuaTEX manual) before you’re fully
happy. If you don’t know about catcodes, just skip this paragraph.5

Let’s look at \directlua now. To get an idea about how it works, imagine that it’s a \write
command, but it writes only to a virtual file and immediately arranges for this file to be fed to
the Lua interpreter. On the Lua end, the consequence is that each argument of a \directlua

command has its own scope: local variables from one will not be visible to the other. (Which
is rather sane, but always good to know.)

Now, the major gotcha is that before being fed to the Lua interpreter, the argument is first
read and tokenised by TEX, then fully expanded and turned back into a plain string. Being read
by TEX has several consequences. One of them is that end of lines are turned into spaces, so
the Lua interpreter sees only one (long) line of input. Since Lua is a free-form language, it
doesn’t usually matter, but it does if you use comments:

\directlua{a_function()

-- a comment

another_function()}

won’t do what you probably expect: another_function() will be seen as part of the comment
(it’s only one line, remember).

Another consequence of being read by TEX is that successive spaces are merged into one
space, and TEX comments are discarded. So, here is a surprisingly correct version of the pre-
vious example.

\directlua{a_function()

% a comment

another_function()}

It is also worth noticing that, since the argument basically is inside a \write, it’s in expansion-
only context. If you don’t know what it means, let me say that expansion issues are mostly
what makes TEX programming so difficult to avoid expanding further on that matter.

I’m sorry if the last three paragraphs were a bit TEXnical in nature but I thought you had to
know. To reward you for staying with me, here is a debugging trick. Put the following code
near the beginning of your document:

4Okay, these are usually nice and helpful actions, but in this case they are most probably unexpected so I call
them nasty.

5Erf, too late, you already read it.

5

\newwrite\luadebug

\immediate\openout\luadebug luadebug.lua

\AtEndDocument{\immediate\closeout\luadebug}

\newcommand\directluadebug{\immediate\write\luadebug}

Then, when you have a hard time understanding why a particular call to \directlua doesn’t
do what you expect, replace this instance of the command with \directluadebug, compile as
usual and look in the file luadebug.lua produced what the Lua interpreter actually read.

The luacode package provides commands and environments that help to varying degrees
with some of these problems. Hoewever, for everything but trivial pieces of Lua code, it is
wiser to use an external file containing only Lua code defining functions, then load it and use
its functions. For example:

\directlua{dofile(”my-lua-functions.lua”)}

\newcommand*{\greatmacro}[2]{%

\directlua{my_great_function(”\luatexluaescapestring{#1}”, #2)}}

The example assumes that my_great_function is defined in my-lua-functions.lua and takes a
string and a number as arguments. Notice that we carefully use the \luatexluaescapestring
primitives on the string argument to escape any backslash or double-quote it might contain
and which would confuse the Lua parser.6

That’s all concerning Lua in TEX. If you’re wondering why \luatexluaescapestring has
such a long and silly name, you might want to read the next section.

1.4 Other things you should know

Just in case it isn’t obvious, the LuaTEX manual, luatexref-t.pdf, is a great source of infor-
mation about LuaTEX and you’ll probably want to consult it at some point (though it is a bit
arid and technical).

It is important to know that the name of the new primitives of LuaTEX as you read them in
the manual are not the actual names you’ll be able to use in LuaLATEX. To prevent clashes with
existing macro names, all new primitives have been prefixed with \luatex unless they already
start with it, so \luaescapestring becomes \luatexluaescapetring while \luatexversion

remains \luatexversion. The rationale is detailed in section 4.

Oh, and by the way, did I mention that LuaTEX is in beta and version 1.0 is expected in late
2012? You can learn more on the roadmap page of the LuaTEX site. Stable betas are released
regularly and are included in TEXLive since 2008 and MikTEX since 2.9.

Not surprisingly, support for LuaTEX in LATEX is shiny new, which means it may be full of
(shiny) bugs, and things may change at any point. You might want to keep your TEX distri-
bution very up-to-date7 and also avoid using LuaLATEX for critical documents at least for some
time.

6If you ever used SQL then the concept of escaping strings is hopefully not new to you.
7For TEXLive, consider using the complementary tlcontrib repository.

6

http://luatex.org/
http://tlcontrib.metatex.org/

As a general rule, this guide documents things as they are at the time it is written or updated,
without keeping track of changes. Hopefully, you’ll update your distribution as a whole so
that you always get matching versions of this guide and the packages, formats and engine it
describes.

2 Essential packages and practices

This section presents the packages you’ll probably want to always load as a user, or that you
should absolutely know about as a developer.

2.1 User-level

fontspec Engines: X ETEX, LuaTEX. Formats: LATEX.
Authors: Will Robertson.
CTAN location: macros/latex/contrib/fontspec/.
Development url: https://github.com/wspr/fontspec/.
Nice interface to font management, well-integrated in to the LATEX font selection scheme. Al-
ready presented in the previous section.

2.2 Developer-level

2.2.1 Naming conventions

On the TEX end, control sequences starting with \luatex are reserved for primitives. It is
strongly recommended that you do not define any such control sequence, to prevent name
clashes with future versions of LuaTEX. If you want to a emphasize that a macro is specific to
LuaTEX, we recommend that you use the \lua prefix (without a following tex) instead. It is
okay to use the \luatex@ prefix for internal macros, since primitive names never contain @,
but it might be confusing. Moreover, you’re already using a unique prefix for internal macros
in all of your packages, aren’t you?

On the Lua end, please keep the global namespace as clean as possible. That is, use a table
mypackage and put all your public functions and objects in this table. You might want to use
Lua’s module(). Other strategies for Lua module management are discussed in chapter 15 of
Programming in Lua. Also, it is probably a good idea to use local for your internal variables
and functions. Finally, to avoid clashes with future versions of LuaTEX, it is recommended to
avoid modifying the namespaces of LuaTEX’s default libraries.

2.2.2 Engine and mode detection

Various packages allow to detect the engine currently processing the document.

ifluatex Engines: all. Formats: LATEX, Plain.
Authors: Heiko Oberdiek.
CTAN location: macros/latex/contrib/oberdiek/.
Provides \ifluatex and makes sure \luatexversion is available.

7

http://mirror.ctan.org/macros/latex/contrib/fontspec/
https://github.com/wspr/fontspec/
http://www.lua.org/manual/5.1/manual.html#pdf-module
http://www.lua.org/pil/15.html
http://www.lua.org/pil/15.html
http://mirror.ctan.org/macros/latex/contrib/oberdiek/

iftex Engines: all. Formats: LATEX, Plain.
Authors: Vafa Khalighi.
CTAN location: macros/latex/contrib/iftex/.
Development url: http://bitbucket.org/vafa/iftex.
Provides \ifPDFTeX, \ifXeTeX, \ifLuaTeX and corresponding \Require commands.

expl3 Engines: all. Formats: LATEX.
Authors: The LATEX3 Project.
CTAN location: macros/latex/contrib/expl3/.
Development url: http://www.latex-project.org/code.html.
Amongstmany other things, provides \luatex_if_engine:TF, \xetex_if_engine:TF and their
variants.

ifpdf Engines: all. Formats: LATEX, Plain.
Authors: Heiko Oberdiek.
CTAN location: macros/latex/contrib/oberdiek/.
Provides \ifpdf switch. LuaTEX, like pdfTEX, can produce either PDF or DVI output; the later
is not very useful with LuaTEX as it doesn’t support any advanced feature such as Unicode
and modern font formats. The \ifpdf switch is true if and only if you are running pdfTEX-or-
LuaTEX in PDFmode (note that this doesn’t include X ETEX, whose support for PDF is different).

2.2.3 Basic resources

luatexbase Engines: LuaTEX. Formats: LATEX, Plain.
Authors: Élie Roux & Manuel Pégourié-Gonnard.
CTAN location: macros/luatex/generic/luatexbase/.
Development url: https://github.com/mpg/luatexbase.
The Plain and LATEX formats provide macros to manage TEX basic resources, such as count or
box registers. LuaTEX introduces new resources that need to be shared gracefully by packages.
This package provides the basic tools to manage: the extended conventional TEX resources,
catcode tables, attributes, callbacks, Lua modules loading and identification. It also provides
basic tools to handle a few compatibility issues with older version of LuaTEX.
Warning. This package is currently in conflict with the luatex package, since they both do
almost the same thing. The respective package authors are well aware of this situation and
plan to somehow merge the two packages in the near future, though the timeline is not clear.

luatex Engines: LuaTEX. Formats: LATEX, Plain.
Authors: Heiko Oberdiek.
CTAN location: macros/latex/contrib/oberdiek/.
See the description of luatexbase above. This package provides the same core features except
for callback management and Lua module identification.

lualibs Engines: LuaTEX. Formats: Lua.
Authors: Élie Roux.
CTAN location: macros/luatex/generic/lualibs/.
Development url: https://github.com/mpg/lualibs.

8

http://mirror.ctan.org/macros/latex/contrib/iftex/
http://bitbucket.org/vafa/iftex
http://mirror.ctan.org/macros/latex/contrib/expl3/
http://www.latex-project.org/code.html
http://mirror.ctan.org/macros/latex/contrib/oberdiek/
http://mirror.ctan.org/macros/luatex/generic/luatexbase/
https://github.com/mpg/luatexbase
http://mirror.ctan.org/macros/latex/contrib/oberdiek/
http://mirror.ctan.org/macros/luatex/generic/lualibs/
https://github.com/mpg/lualibs

Collection of Lua libraries and additions to the standard libraries; mostly derived from the
ConTEXt libraries. If you need a basic function that Lua doesn’t provide, check this package
before rolling your own implementation.

2.2.4 Font internals

Those packages are loaded by fontspec to handle some low-level font and encoding issues. A
normal user should only use fontspec, but a developer may need to know about them.

luaotfload Engines: LuaTEX. Formats: LATEX, Plain.
Authors: Élie Roux & Khaled Hosny.
CTAN location: macros/luatex/generic/luaotfload/.
Development url: https://github.com/khaledhosny/luaotfload.
Low-level OpenType font loading, adapted from the generic subset of ConTEXt. Basically, it
uses the fontloader Lua library and the appropriate callbacks to implement a syntax for the
\font primitive very similar to that of X ETEX and implement the corresponding font features.
It also handles a font database for transparent access to fonts from the system and the TEX
distribution either by family name or by file name, as well as a font cache for faster loading.

euenc Engines: X ETEX, LuaTEX. Formats: LATEX.
Authors: Will Robertson, Élie Roux & Khaled Hosny.
CTAN location: macros/latex/contrib/euenc/.
Development url: https://github.com/wspr/euenc.
Implements the EUx Unicode font encodings for LATEX’s fontenc system. Currently, X ELATEX is
using EU1 and LuaTEX is using EU2. Includes definitions (fd files) for Latin Modern, the default
font loaded by fontspec.

3 Other packages

Note that the packages are not listed in any particular order.

3.1 User-level

luatextra Engines: LuaTEX. Formats: LATEX.
Authors: Élie Roux & Manuel Pégourié-Gonnard.
CTAN location: macros/luatex/latex/luatextra/.
Development url: https://github.com/mpg/luatextra.
Loads usual packages, currently fontspec, luacode, metalogo (commands for logos, including
\LuaTeX and \LuaLaTeX), luatexbase, lualibs, fixltx2e (fixes and enhancements for the LATEX
core).

luacode Engines: LuaTEX. Formats: LATEX.
Authors: Manuel Pégourié-Gonnard.
CTAN location: macros/luatex/latex/luacode/.
Development url: https://github.com/mpg/luacode.

9

http://mirror.ctan.org/macros/luatex/generic/luaotfload/
https://github.com/khaledhosny/luaotfload
http://mirror.ctan.org/macros/latex/contrib/euenc/
https://github.com/wspr/euenc
http://mirror.ctan.org/macros/luatex/latex/luatextra/
https://github.com/mpg/luatextra
http://mirror.ctan.org/macros/luatex/latex/luacode/
https://github.com/mpg/luacode

Provides commands and macros that help including Lua code in a TEX source, especially con-
cerning special characters.

luainputenc Engines: LuaTEX, X ETEX, pdfTEX. Formats: LATEX.
Authors: Élie Roux & Manuel Pégourié-Gonnard.
CTAN location: macros/luatex/latex/luainputenc/.
Development url: https://github.com/mpg/luainputenc.
Helps compiling documents relying on legacy encodings (either in the source orwith the fonts).
Already presented in the introduction. When running X ETEX, just loads xetex-inputenc; under
pdfTEX, loads the standard inputenc.

luamplib Engines: LuaTEX. Formats: LATEX, Plain.
Authors: Hans Hagen, Taco Hoewater & Élie Roux.
CTAN location: macros/luatex/generic/luamplib/.
Development url: https://github.com/mpg/luamplib.
Provides a nice interface for the mplib Lua library that embeds metapost in LuaTEX.

luacolor Engines: LuaTEX. Formats: LATEX.
Authors: Heiko Oberdiek.
CTAN location: macros/latex/contrib/oberdiek/.
Changes low-level color implementation to use LuaTEX attributes in place of whatsits. This
makes the implementation more robust and fixes strange bugs such as wrong alignment when
\color happens at the beginning of a \vbox.

luadirections Engines: LuaTEX. Formats: LATEX, Plain, ConTEXt.
Authors: Khaled Hosny.
Development url: https://github.com/khaledhosny/luadirections.
Higher-level interface to LuaTEX’s multi-directional support. Currently not released on CTAN.

3.2 Developer-level

pdftexcmds Engines: LuaTEX, pdfTEX, X ETEX. Formats: LATEX, Plain.
Authors: Heiko Oberdiek.
CTAN location: macros/latex/contrib/oberdiek/.
Though LuaTEX is mostly a superset of pdfTEX, a few utility primitives were removed (those
that are sort of superseded by Lua) or renamed. This package provides them with consistent
names across engines, including X ETEX which recently implemented some of these primitives,
such as \strcmp.

magicnum Engines: LuaTEX, pdfTEX, X ETEX. Formats: LATEX, Plain.
Authors: Heiko Oberdiek.
CTAN location: macros/latex/contrib/oberdiek/.
Provides hierarchical access to “magic numbers” such as catcodes, group types, etc. used in-
ternally by TEX and its successors. Under LuaTEX, a more efficient implementation is used and
a Lua interface is provided.

lua-alt-getopt Engines: texlua. Formats: command-line.
Authors: Aleksey Cheusov.

10

http://mirror.ctan.org/macros/luatex/latex/luainputenc/
https://github.com/mpg/luainputenc
http://mirror.ctan.org/macros/luatex/generic/luamplib/
https://github.com/mpg/luamplib
http://mirror.ctan.org/macros/latex/contrib/oberdiek/
https://github.com/khaledhosny/luadirections
http://mirror.ctan.org/macros/latex/contrib/oberdiek/
http://mirror.ctan.org/macros/latex/contrib/oberdiek/

CTAN location: support/lua/lua-alt-getopt.
Development url: http://luaforge.net/project/lua_altgetopt.
Command-line option parser, mostly compatible with POSIX and GNU getopt, to be used in
command-line Lua scripts such as mkluatexfontdb from luaotfload.

4 The luatex and lualatex formats

This section is for developers and curious users only; normal users can safely skip it. The
following information apply to TEXLive 2010, and most likely to MikTEX 2.9 too, though I
didn’t actually check. Earlier versions of TEXLive had slightly different and less complete
arrangements.

Primitive names As mentioned in section 1.4, the names of the LuaTEX-specific primitives are not the same
in the lualatex format as in the LuaTEX manual. In the luatex format (that is, LuaTEX with
the Plain format), primitives are available with their natural name, but also with the prefixed
name, in order to ease development of generic packages.

The rationale, copy-pasted from the file lualatexiniconfig.tex that implements this for
the lualatex format, is:

1. All current macro packages run smoothly on top of pdf(e)TeX, so those primitives are left
untouched.

2. Other non-TeX82 primitives in LuaTEX may cause name clashes with existing macros in macro
packages, especially when they use very “natural” names such as \outputbox, \mathstyle etc.
Such a probability for name clashes is undesirable, since the most existing LaTeX documents
that run without change under LuaTEX, the better.

3. The LuaTEX team doesn’t want to apply a systematic prefixing policy, but kindly provided a tool
allowing prefixes to be applied. So we chose to use it. Previously, we even disabled the extra
primitives, but now we feel it’s better to enable them with systematic prefixing, in order to
avoid that each and every macro package (or user) enables them with various and inconsistent
prefixes (including the empty prefix).

4. The luatex prefix was chosen since it is already used as a prefix for some primitives, such as
\luatexversion: this way, those primitives don’t end up with a double prefix (for details, see
tex.enableprimitives in the LuaTEX manual).

5. The \directlua primitive is provided both with its natural name (allowing easy detection of
LuaTEX) and a prefixed version \luatexdirectlua (for consistency with \luatexlatelua).

6. Various remarks:

• The obvious drawback of such a prefixing policy is that the names used by LATEX or generic
macro writer won’t match the names used in the manual. We hope this is compensated
by the gain in backwards compatibility.

• All primitives dealing with Unicode math already begin with \U, and maybe will match
the names of X ETEX primitives some day, so maybe prefixing was not necessary/desirable
for them. However, we tried to make the prefixing rule as simple as possible, so that the
previous point doesn’t get even worse.

11

http://mirror.ctan.org/support/lua/lua-alt-getopt
http://luaforge.net/project/lua_altgetopt

• The final name of some primitive may sound strange, namely those already containing
the name of an engine, such as \luatexOmegaVersion. However, since LuaTEX is not a
drop-in replacement for Omega/Aleph, we felt it wrong to provide \OmegaVersion.

• Maybe some day we’ll feel it’s better to provide all primitives without prefixing. If this
happens, it will be easy to add the unprefixed primitives in the format while keeping
the prefixed names for compatibility. It wouldn’t work the other way round; i.e., belat-
edly realizing that we should not provide the unprefixed primitives would then break any
LuaTEX-specific macro packages that had been written.

\jobname The LATEX kernel (and a lot of packages) use constructs like \input\jobname.aux for various
purposes. When \jobname contains spaces, this doesn’t do the right thing, since the argument
of \input ends at the first space. To work around this, pdfTEX automagically quotes \jobname
when needed, but LuaTEX doesn’t for some reason. A nearly complete workaround is included
in LATEX-based (as opposed to Plain-based) LuaTEX formats.

It doesn’t work, however, if LuaTEX is invoked as lualatex ’\input name’, as opposed to
the more usual lualatex name. To work around this limitation of the workaround included in
the format, specifying a jobname explicitly, as in lualatex jobname=name ’\input name’. Or
even better, just don’t use spaces in the names of your TEX files.

For more details, see this old thread and this newer one on the LuaTEX mailing lists, and
lualatexquotejobname.tex for the implementation of the workaround.

babel LuaTEX offers dynamic loading for hyphenation patterns. There is currently no support for
this in babel but some files have been modified to provide semi-dynamic loading, to achieve a
better loading time of the format. This is only an implementation change, nothing should be
visible at the user level. A modified pattern loading scheme is used for Plain-based formats
too.

Documentation and implementation details are included in luatex-hyphen.pdf. The sources
are part of the texhyphen project.

codes The engine itself does not set \catcodes, \lccodes, etc. for non-ASCII characters. Correct
\lccodes in particular are essential for hyphenation to work. Formats for LuaTEX now include
luatex-unicode-letters.tex, a modified version of unicode-letters.tex from the X ETEX
distribution, that takes care of settings these values in accordance with the Unicode standard.

This was added after TEXLive 2010 went out, so you are strongly advised to update your
installation if you want to enjoy proper hyphenation for non-ASCII text.

5 Things that just work, partially work, or don’t work (yet)

5.1 Just working

Unicode Conventional LATEX offers some level of support for UTF-8 in input files. However, at a low
level, non-ASCII characters are not atomic in this case: they consist of several elementary
pieces (known as tokens to TEXnicians). Hence, some packages that scan text character by
character or do other atomic operations on characters (such as changing their catcodes) often

12

http://www.ntg.nl/pipermail/dev-luatex/2009-April/002549.html
http://tug.org/pipermail/luatex/2010-August/001986.html
http://tug.org/tex-hyphen/

have problems with UTF-8 in conventional LATEX. For example, you can’t use any non-ASCII
character for short verbatim with fancyvrb, etc.

The good news is, with LuaLATEX, some of these package’s features start working on arbitrary
Unicode characters without needing to modify the package. The bad news is, this isn’t always
true. Se the next section for details.

5.2 Partially working

microtype Package microtype has limited support for LuaTEX: more precisely, as of version 2.4 2010/01/10,
protrusion and expansion are available and activated by default in PDF mode, but kerning,
spacing and tracking are not supported (see table 1 in section 3.1 of microtype.pdf).

On the other hand, luaotfload, loaded by fontspec, supports a lot of microtypographic fea-
tures. So the only problem is the lack of a unified interface.

xunicode Package xunicode’s main feature is to ensure that the usual control sequences for non-ASCII
characters (such as \’e) do the right thing in a Unicode context. It could probably work with
LuaTEX, but explicitly checks for X ETEX only. However, fontspec uses a trick to load it anyway.
So, you can’t load it explicitly, but you don’t need to, since fontspec already took care of it.

encodings As mentioned in the above section, a few things that were problematic with UTF-8 on con-
ventional LATEX spontaneously works, but not always. For example, with the listings package
on LuaLATEX, you may use only characters below 256 (that is, characters from the Latin-1 set),
inside your listings (but of course the full Unicode range is still available in the rest of your
document).

metrics This item isn’t exactly about working or not working, but rather about not working in ex-
actly the same way as pdfTEX or X ETEX: you may observe minor differences in the layout and
hyphenation of your text.

They may be due variations between two versions of the same font used by the various en-
gines, adjustments made to the hyphenation, ligaturing or kerning algorithms (or example, the
first word of a paragraph, as well as words containing different fonts, can now be hyphenated),
or differences in the hyphenation patterns used (patterns used by pdfTEX are basically frozen,
but LuaTEX and X ETEX use newer version for some languages) for this language.

If you ever observe a major difference between pdfLATEX and LuaLATEX with the same fonts,
it is not at all unlikely that a bug in LuaTEX

8 or in the font is involved. As usual, make sure
your distribution is up-to-date before reporting such a problem.

babel Short version: working mostly without problems for Latin languages. For other lan-
guages, your mileage may vary. A more modern, but less complete, package for multilingual
support, polyglossia is available for X ELATEX but is not ported to LuaLATEX yet.

Long version: erf, actually I don’t know the details yet. I’ll try to gather more information
and update this paragraph. Please let me know if you have experience or knowledge to share
in this domain.

8For example, LuaTEX 0.60 had a bug that prevented any hyphenation after a --- ligature until the end of the
paragraph.

13

5.3 Not working (yet)

old encodings Packages playing with input (source files) or output (fonts) encodings are very likely to break
with LuaTEX. The good news is, Unicode is a more powerful way to handle encoding problems
that old packages were trying to solve, so you most likely don’t need these packages anyway.
However, not everything is already ported to the shiny new world of Unicode, so you may
have a more limited (or just different) set of choices available for some time (this is especially
true for fonts).

soul The soul package uses a clever trick with a monospaced font to count characters. However,
due to differences in font handling (and maybe a bug in LuaTEX), this doesn’t work yet with
character above 256 (that is, outside the Latin-1 set).

spaces Spaces in file names are not really well supported in the TEX world in general. This doesn’t
really get better with LuaTEX. Also, due to tricky reasons, things may be worse if you have
spaces in the name of your main TEX file and don’t invoke LuaTEX in the usual way. If you
do invoke it in the usual way, everything should work, and I won’t tell you what the unusual
invocation looks like. Otherwise, read the point about jobname in section 4 for a workaround
and technical details. Or even better, don’t use spaces in the names of your TEX files.

14

	Introduction
	Just what is LuaLaTeX ?
	Switching from LaTeX to LuaLaTeX
	A Lua-in-TeX primer
	Other things you should know

	Essential packages and practices
	User-level
	fontspec

	Developer-level
	ifluatex
	iftex
	expl3
	ifpdf
	luatexbase
	luatex
	lualibs
	luaotfload
	euenc

	Other packages
	User-level
	luatextra
	luacode
	luainputenc
	luamplib
	luacolor
	luadirections

	Developer-level
	pdftexcmds
	magicnum
	lua-alt-getopt

	The luatex and lualatex formats
	Primitive names
	\jobname
	babel
	codes

	Things that just work, partially work, or don't work (yet)
	Just working
	Unicode

	Partially working
	microtype
	xunicode
	encodings
	metrics

	Not working (yet)
	old encodings
	soul
	spaces

