Babel, a multilingual package for use with IITEX’s
standard document classes®

Johannes Braams
Kersengaarde 33
2723 BP Zoetermeer
The Netherlands
babel@braams.xs4all.nl

Printed April 1, 2008

Abstract

The standard distribution of I¥TEX contains a number of document
classes that are meant to be used, but also serve as examples for other
users to create their own document classes. These document classes have
become very popular among IXTEX users. But it should be kept in mind
that they were designed for American tastes and typography. At one time
they contained a number of hard-wired texts. This report describes babel,
a package that makes use of the new capabilities of TEX version 3 to pro-
vide an environment in which documents can be typeset in a non-American
language, or in more than one language.

Contents 8 Compatibility with ngerman.sty 12

1 The user interface 4 9 Compatibility with the
1.1 Languages supported by french package 12

Babel . . . . .. ... ... 5
1.2 Workarounds . .. .. .. 6 10 Identification 12

2 Changes for BTEX 2¢ 6 11 The Package File 13

3 Changes in Babel version 3.7 7 11.1 Language options . . . . . 13

4 Changes in Babel version 3.6 8 12 The Kernel of Babel 16

12.1 Encoding issues (part 1) . 17

5 Changes in Babel version 3.5 8 12.2 Multiple languages . . . . 18

12.3 Support for active char-

6 The interface between the acters . . . . . . . . . .. 30
core of babel and the lan- 12.4 Shorthands . . ... ... 31
guage definition ﬁl'es 9 12.5 Language attributes . . . 40
6.1 Support for active char- s

ters 10 12.6 Support for saving macro
6.9 gc ers t. f. T definitions . . . . . .. .. 42
: upport for saving macro e o
definitions . . . . ... .. 11 12.7 Support  for extending
. . MAaCrosS . . . . . . v o ... 43
6.3 Support for extending
X 12.8 Macros common to a
macros . . . . . . . . . .. 11

6.4 Macros common to a number of languages . . . 43

number of languages . . . 11 12.9 Making glyphs available . 44

12.10Quotation marks . . . . . 44
7 Compatibility with german.sty 12  12.11Letters . . . . . . . . . .. 45

*During the development ideas from Nico Poppelier, Piet van Oostrum and many others have
been used. Bernd Raichle has provided many helpful suggestions.



12.12Shorthands for quotation
marks
12.13Umlauts and trema’s . . .
12.14The redefinition of the
style commands
12.14.1 Redefinition
macros
12.15Cross referencing macros .
12.16marks
12.17Encoding issues (part 2) .
12.18Preventing clashes with
other packages
12.18.1ifthen
12.18.2varioref
12.18.3hhline
12.18.4hyperref
12.18.5 General

of

13 Local Language Configura-
tion

14 Driver files for the docu-
mented source code

15 Conclusion

16 Acknowledgements

17 References

18 The Esperanto language
19 The Interlingua language
20 The Dutch language

21 The English language

22 The German language

23 The German language — new
orthography

60

61

65

65

65

66

69

71

75

79

84

24 The Breton language 87
25 The Welsh language 90
26 The Irish language 92
27 The Scottish language 94
28 The Greek language 96
28.1 Typing conventions . . . . 96
28.2 Greek numbering . . . . . 96
29 The French language 104
29.1 Basic interface . . . . .. 104
29.2 Customisation . . . . . . . 105
29.3 Hyphenation checks 107
29.4 Changes . . . . ... ... 108

29.5 File frenchb.cfg

30 TEXnical details
30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8
30.9

Initial setup
Punctuation . . . . . . ..
French quotation marks

Date in French

Extra utilities . . . . . . .
Formatting numbers . . .
Caption names . . . . . .

French lists

French
sections

of

indentation

30.10Formatting footnotes . . .
30.11Global layout
30.12Dots. . .

30.13Setup options: keyval stuff 123

30.14Clean up and exit

31 The Italian language
31.1 Support for etymological
hyphenation

31.2 Facilities required by the
ISO 31/XI regulations . .
31.3 Accents

314

Caporali or French dou-
ble quotes . . . . .. ...

31.5
31.6

Finishing commands . . .
References

32 The Latin language
33 Latin shortcuts
34 Etymological hyphenation

35 The Portuguese language

36 The Spanish language
36.1 The Code

37 The Catalan language
38 This file

39 The Galcian language
39.1 The Code

40 The Basque language

41 The Romanian language

42 The Danish language

129

130

139

142

144

146

150
154

170

177

177
179

196

199

201



43 The Icelandic language

43.1
43.2
43.3
43.4
43.5
43.6

Overview

References
TEXnical details . . . . . .
Captionnames and date

Icelandic quotation marks
Old Icelandic

43.7
43.8 Extra utilities
44 The Norwegian language

45 The Swedish language

46 The North Sami language
46.1 The code of samin.dtx

47 The Finnish language
48 The Hungarian language

49 The Estonian language
49.1 TImplementation

50 The Albanian language
51 The Croatian language
52 The Czech language

53 The Polish language

Formatting numbers . .

204
204
204
205

. 206

207
207

. 208

210

212

216

220

. 220

222

225

240
240

244

247

249

251

54 The Serbocroatian language256

55 The Slovak language

56 The Slovenian language
57 The Russian language
58 The Bulgarian language
59 The Ukrainian language

60 The
guage

Lower Sorbian

61 The
guage

Upper Sorbian

62 The Turkish language

63 The Hebrew language

63.1 Acknowledgement . . . .
63.2 The DOCSTRIP modules
63.3 Hebrew language defini-

tions

63.3.1 Hebrew numerals .
63.4 Right to left support . .

259

263

265

277

288

lan-

300

lan-

302

305

308
308

. 308

309
312

. 318

63.4.1 Switching from
LR to RL mode
and back
Counters
Preserving logos
List environments
Tables of moving
stuff
Two-column mode
Footnotes . . . . .
Headings and
two-side support . 328
63.4.9 Postscript Porblems331
63.4.10 Miscellaneous in-
ternal TEX macros332
63.4.11 Bibliography and
citations . . . . ..
63.4.12 Additional bidi-
rectional commands335

63.4.2
63.4.3
63.4.4
63.4.5

63.4.6
63.4.7
63.4.8

63.5 Hebrew calendar . . . .. 336
63.5.1 Introduction . . . 337
63.5.2 Registers, Com-

mands, Format-
ting Macros . . . . 337
63.5.3 Auxiliary Macros . 339
63.5.4 Gregorian Part . . 340
63.5.5 Hebrew Part . 341
64 Hebrew input encodings 345

64.1 Default definitions for
characters . . . ... ... 346

64.2 The SI-960 encoding . . . 347

64.3 The ISO 8859-8 encod-
ing and the MS Windows
cpl255 encoding . . . . . 347

64.4 The IBM code page 862 . 349

65 Hebrew font encodings 351

65.1 THIS SECTION IS OUT
OF DATE. UPDATE
DOCS TO MATCH HES
ENCODING . . ... .. 351

65.2 The DOCSTRIP modules . 352

65.3 The LHEencoding defini-
tion file . ... ...... 352

65.4 The font definition files
(in LHE encoding) . . . . . 354

65.4.1
65.4.2

Hebrew default font354
Hebrew sans-serif

font
Hebrew
writer font
Hebrew classic font 355
Hebrew  shalom

fonts
Hebrew
ruehl font 356
Hebrew carmel font 357

65.4.3

65.4.4
65.4.5

65.4.6 frank-

65.4.7



\selectlanguage

otherlanguage

\foreignlanguage

otherlanguagex*

hyphenrules

\languagename

\iflanguage

\useshorthands

65.4.8 Hebrew redis font . 357 65.6.11 8Bit Miri-

65.5 The HE8encoding defini- amMono font . . . 363
tionfile . ... ... ... 358 65.6.12 8Bit Nachlieli font 363
65.5.1 CHECK HERE 65.6.13 Hebrew font

FOR HES UP- switching  com-
DATES ... ... 358 mands . . . .. .. 363

65.6 The font definition files
(in HE8 encoding) . . . . . 360 66 Hebrew in KTEX 2.09 com-
65.6.1 Hebrew default font360 patibility mode 366
65.6.2 Hebrew sans-serif 66.1 The DOCSTRIP modules . 366

font . . ... .. 360 66.2 Obsolete style files . . . . 366
65.6.3 Hebrew type-

writer font . ... 361 67 The Bahasa Indonesian lan-
65.6.4 8Bit OmegaHe- guage 368

brew font . . . .. 361
65.6.5 8Bit Aharoni font 361 68 The Bahasa Malaysia lan-
65.6.6 8Bit David font . . 362 guage 370

65.6.7 8Bit Drugulin font 362
65.6.8 8Bit Ellinia font . 362 69 Not renaming hyphen.tex 372
65.6.9 8Bit FrankRuehl

font . ... .. .. 362 70 Support for formats based
65.6.10 8Bit KtavYad font 363 on PLAINTEX 373

1 The user interface

The user interface of this package is quite simple. It consists of a set of commands
that switch from one language to another, and a set of commands that deal with
shorthands. It is also possible to find out what the current language is.

When a user wants to switch from one language to another he can do so using
the macro \selectlanguage. This macro takes the language, defined previously
by a language definition file, as its argument. It calls several macros that should
be defined in the language definition files to activate the special definitions for the
language chosen.

The environment otherlanguage does basically the same as \selectlanguage,
except the language change is local to the environment. This environment is re-
quired for intermixing left-to-right typesetting with right-to-left typesetting. The
language to switch to is specified as an argument to \begin{otherlanguagel.

The command \foreignlanguage takes two arguments; the second argument
is a phrase to be typeset according to the rules of the language named in its first
argument. This command only switches the extra definitions and the hyphenation
rules for the language, not the names and dates.

In the environment otherlanguage* only the typesetting is done according to
the rules of the other language, but the text-strings such as ‘figure’; ‘table’; etc.
are left as they were set outside this environment.

The environment hyphenrules can be used to select only the hyphenation
rules to be used. This can for instance be used to select ‘nohyphenation’, pro-
vided that in language.dat the ‘language’ nohyphenation is defined by loading
serohyph.tex.

The control sequence \languagename contains the name of the current lan-
guage.

If more than one language is used, it might be necessary to know which lan-
guage is active at a specific time. This can be checked by a call to \iflanguage.
This macro takes three arguments. The first argument is the name of a language;
the second and third arguments are the actions to take if the result of the test is
true or false respectively.

The command \useshorthands initiates the definition of user-defined short-



\defineshorthand

\aliasshorthand

\languageshorthands

\shorthandon
\shorthandoff

\languageattribute

hand sequences. It has one argument, the character that starts these personal
shorthands.

The command \defineshorthand takes two arguments: the first is a one-
or two-character shorthand sequence, and the second is the code the shorthand
should expand to.

The command \aliasshorthand can be used to let another character perform
the same functions as the default shorthand character. If one prefers for example to
use the character / over " in typing polish texts, this can be achieved by entering
\aliasshorthand{"}{/}. Please note that the substitute shorthand character
must have been declared in the preamble of your document, using a command
such as \useshorthands{/} in this example.

The command \languageshorthands can be used to switch the shorthands on
the language level. It takes one argument, the name of a language. Note that for
this to work the language should have been specified as an option when loading
the babel package.

It is sometimes necessary to switch a shorthand character off temporarily, be-
cause it must be used in an entirely different way. For this purpose, the user
commands \shorthandoff and \shorthandon are provided. They each take a
list of characters as their arguments. The command \shorthandoff sets the
\catcode for each of the characters in its argument to other (12); the command
\shorthandon sets the \catcode to active (13). Both commands only work on
‘known’ shorthand characters. If a character is not known to be a shorthand
character its category code will be left unchanged.

This is a user-level command, to be used in the preamble of a document (after
\usepackage[...]{babell}), that declares which attributes are to be used for a
given language. It takes two arguments: the first is the name of the language;
the second, a (list of) attribute(s) to used. The command checks whether the
language is known in this document and whether the attribute(s) are known for
this language.

1.1 Languages supported by Babel

In the following table all the languages supported by Babel are listed, together
with the names of the options with which you can load babel for each language.

Language  Option(s)
Afrikaans  afrikaans

Bahasa bahasa, indonesian, indon, bahasai, bahasam, malay,
meyalu

Basque basque

Breton breton

Bulgarian  bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, USenglish, american, UKenglish, british,
canadian, australian, newzealand

Esperanto esperanto

Estonian  estonian

Finnish finnish

French french, francais, canadien, acadian

Galician galician

German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek




Language Option(s)
Hebrew hebrew
Hungarian magyar, hungarian
Icelandic icelandic
Interlingua interlingua
Irish Gaelic irish

Italian italian

Latin latin

Lower Sorbian  lowersorbian
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic  scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian  uppersorbian
Welsh welsh

For some languages babel supports the options activeacute and activegrave; for
typestting Russian texts, babel knows about the options LWN and LCY to specify
the fontencoding of the cyrillic font used. Currently only LWN is supported.

1.2 Workarounds

If you use the document class book and you use \ref inside the argument of
\chapter, ITEX will keep complaining about an undefined label. The reason is
that the argument of \ref is passed through \uppercase at some time during
processing. To prevent such problems, you could revert to using uppercase labels,
or you can use \lowercase{\ref{fool}} inside the argument of \chapter.

2 Changes for ETEX 2¢

With the advent of KWTEX 2¢ the interface to babel in the preamble of the document
has changed. With BETEX2.09 one used to call up the babel system with a line
such as:

\documentstyle[dutch,english]{article}

which would tell TEX that the document would be written in two languages,
Dutch and English, and that English would be the first language in use.
The ITEX 2¢ way of providing the same information is:

\documentclass{article}
\usepackage [dutch,english] {babel}

or, making dutch and english global options in order to let other packages detect
and use them:

\documentclass[dutch,english]{article}
\usepackage{babel}
\usepackage{varioref}

In this last example, the package varioref will also see the options and will
be able to use them.



3 Changes in Babel version 3.7

In Babel version 3.7 a number of bugs that were found in version 3.6 are fixed.
Also a number of changes and additions have occurred:

Shorthands are expandable again. The disadvantage is that one has to type
’{}a when the acute accent is used as a shorthand character. The advantage
is that a number of other problems (such as the breaking of ligatures, etc.)
have vanished.

Two new commands, \shorthandon and \shorthandoff have been intro-
duced to enable to temporarily switch off one or more shorthands.

Support for typesetting Greek has been enhanced. Code from the kdgreek
package (suggested by the author) was added and \greeknumeral has been
added.

Support for typesetting Basque is now available thanks to Juan Aguirre-
gabiria.

Support for typesetting Serbian with Latin script is now available thanks to
Dejan Muhamedagi¢ and Jankovic Slobodan.

Support for typesetting Hebrew (and potential support for typesetting other
right-to-left written languages) is now available thanks to Rama Porrat and
Boris Lavva.

Support for typesetting Bulgarian is now available thanks to Georgi Bosh-
nakov.

Support for typesetting Latin is now available, thanks to Claudio Beccari
and Krzysztof Konrad Zelechowski.

Support for typesetting North Sami is now available, thanks to Regnor
Jernsletten.

The options canadian, canadien and acadien have been added for Canadian
English and French use.

A language attribute has been added to the \mark. .. commands in order to
make sure that a Greek header line comes out right on the last page before
a language switch.

Hyphenation pattern files are now read inside a group; therefore any changes
a pattern file needs to make to lowercase codes, uppercase codes, and cate-
gory codes are kept local to that group. If they are needed for the language,
these changes will need to be repeated and stored in \extras. ..

The concept of language attributes is introduced. It is intended to give the
user some control over the features a language-definition file provides. Its
first use is for the Greek language, where the user can choose the ToAvTorké
(“Polutoniko” or multi-accented) Greek way of typesetting texts. These at-
tributes will possibly find wider use in future releases.

The environment hyphenrules is introduced.

The syntax of the file language .dat has been extended to allow (optionally)
specifying the font encoding to be used while processing the patterns file.

The command \providehyphenmins should now be used in language defi-
nition files in order to be able to keep any settings provided by the pattern
file.



4 Changes in Babel version 3.6

In Babel version 3.6 a number of bugs that were found in version 3.5 are fixed.
Also a number of changes and additions have occurred:

e A new environment otherlanguage* is introduced. it only switches the ‘spe-
cials’, but leaves the ‘captions’ untouched.

e The shorthands are no longer fully expandable. Some problems could only be
solved by peeking at the token following an active character. The advantage
is that ’{}a works as expected for languages that have the > active.

e Support for typesetting french texts is much enhanced; the file francais.1df
is now replaced by frenchb.1ldf which is maintained by Daniel Flipo.

e Support for typesetting the russian language is again available. The lan-
guage definition file was originally developed by Olga Lapko from CyrTUG.
The fonts needed to typeset the russian language are now part of the babel
distribution. The support is not yet up to the level which is needed according
to Olga, but this is a start.

e Support for typesetting greek texts is now also available. What is offered
in this release is a first attempt; it will be enhanced later on by Yannis
Haralambous.

e in babel 3.6j some hooks have been added for the development of support
for Hebrew typesetting.

e Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in
South Africa) has been added to dutch.1df.

e Support for typesetting Welsh texts is now available.

e A new command \aliasshorthand is introduced. It seems that in Poland
various conventions are used to type the necessary Polish letters. It is now
possible to use the character / as a shorthand character instead of the char-
acter ", by issuing the command \aliasshorthand{"}{/}.

e The shorthand mechanism now deals correctly with characters that are al-
ready active.

e Shorthand characters are made active at \begin{document}, not earlier.
This is to prevent problems with other packages.

e A preambleonly command \substitutefontfamily has been added to cre-
ate .fd files on the fly when the font families of the Latin text differ from
the families used for the Cyrillic or Greek parts of the text.

e Three new commands \LdfInit, \1df@quit and \1df@finish are intro-
duced that perform a number of standard tasks.

e In babel 3.6k the language Ukrainian has been added and the support for
Russian typesetting has been adapted to the package ’cyrillic’ to be released
with the December 1998 release of I4TEX 2¢.

5 Changes in Babel version 3.5

In Babel version 3.5 a lot of changes have been made when compared with the
previous release. Here is a list of the most important ones:

e the selection of the language is delayed until \begin{document}, which
means you must add appropriate \selectlanguage commands if you in-
clude \hyphenation lists in the preamble of your document.



e babel now has a language environment and a new command \foreignlanguage;

e the way active characters are dealt with is completely changed. They are
called ‘shorthands’; one can have three levels of shorthands: on the user
level, the language level, and on ‘system level’. A consequence of the new
way of handling active characters is that they are now written to auxiliary
files ‘verbatim’;

e A language change now also writes information in the .aux file, as the change
might also affect typesetting the table of contents. The consequence is that
an .aux file generated by a LaTeX format with babel preloaded gives errors
when read with a LaTeX format without babel; but I think this probably
doesn’t occur;

e babel is now compatible with the inputenc and fontenc packages;
e the language definition files now have a new extension, 1df;

e the syntax of the file language.dat is extended to be compatible with the
french package by Bernard Gaulle;

e each language definition file looks for a configuration file which has the same
name, but the extension .cfg. It can contain any valid M TEX code.

6 The interface between the core of babel and the
language definition files

In the core of the babel system, several macros are defined for use in language
definition files. Their purpose is to make a new language known.

\addlanguage The macro \addlanguage is a non-outer version of the macro \newlanguage,
defined in plain.tex version 3.x. For older versions of plain.tex and 1lplain.tex
a substitute definition is used.

\adddialect The macro \adddialect can be used when two languages can (or must) use
the same hyphenation patterns. This can also be useful for languages for which
no patterns are preloaded in the format. In such cases the default behaviour of
the babel system is to define this language as a ‘dialect’ of the language for which
the patterns were loaded as \languageO.

The language definition files must conform to a number of conventions, because
these files have to fill in the gaps left by the common code in babel.def, i.e.,
the definitions of the macros that produce texts. Also the language-switching
possibility which has been built into the babel system has its implications.

The following assumptions are made:

e Some of the language-specific definitions might be used by plain TEX users,
so the files have to be coded so that they can be read by both KTEX and
plain TEX. The current format can be checked by looking at the value of
the macro \fmtname.

e The common part of the babel system redefines a number of macros and
environments (defined previously in the document style) to put in the names
of macros that replace the previously hard-wired texts. These macros have
to be defined in the language definition files.

e The language definition files define five macros, used to activate and deacti-
vate the language-specific definitions. These macros are \(lang)hyphenmins,
\captions(lang), \date(lang), \extras(lang) and \noextras(lang); where
(lang) is either the name of the language definition file or the name of the
TEX option that is to be used. These macros and their functions are dis-
cussed below.



\providehyphenmins

\langhyphenmins
\captionslang

\datelang
\extraslang

\noextraslang

\bbl@declare@ttribute

\main@language

\ProvidesLanguage

\LdfInit

\1ldf@quit

\1ldf@finish

\loadlocalcfg

\substitutefontfamily

\initiate@active@char

e When a language definition file is loaded, it can define \1@{lang) to be a
dialect of \languageO when \1@(lang) is undefined.

e The language definition files can be read in the preamble of the document,
but also in the middle of document processing. This means that they have
to function independently of the current \catcode of the @ sign.

The macro \providehyphenmins should be used in the language definition files
to set the \1lefthyphenmin and \righthyphenmin. This macro will check whether
these parameters were provided by the hyphenation file before it takes any action.

The macro \(lang)hyphenmins is used to store the values of the \lefthyphenmin
and \righthyphenmin.

The macro \captions(lang) defines the macros that hold the texts to replace
the original hard-wired texts.

The macro \date(lang) defines \today and

The macro \extras(lang) contains all the extra definitions needed for a specific
language.

Because we want to let the user switch between languages, but we do not know
what state TEX might be in after the execution of \extras(lang), a macro that
brings TEX into a predefined state is needed. It will be no surprise that the name
of this macro is \noextras(lang).

This is a command to be used in the language definition files for declaring
a language attribute. It takes three arguments: the name of the language, the
attribute to be defined, and the code to be executed when the attribute is to be
used.

To postpone the activation of the definitions needed for a language until the
beginning of a document, all language definition files should use \main@language
instead of \selectlanguage. This will just store the name of the language, and
the proper language will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language
definition files. Its syntax is similar to the syntax of the KTEX command
\ProvidesPackage.

The macro \LdfInit performs a couple of standard checks that must be made
at the beginning of a language definition file, such as checking the category code
of the @Q-sign, preventing the .1df file from being processed twice, etc.

The macro \1df@quit does work needed if a .1df file was processed earlier.
This includes resetting the category code of the @Q-sign, preparing the language to
be activated at \begin{document} time, and ending the input stream.

The macro \1df@finish does work needed at the end of each .1df file. This
includes resetting the category code of the @-sign, loading a local configuration
file, and preparing the language to be activated at \begin{document} time.

After processing a language definition file, IATEX can be instructed to load
a local configuration file. This file can, for instance, be used to add strings to
\captions(lang) to support local document classes. The user will be informed
that this configuration file has been loaded. This macro is called by \1df@finish.

This command takes three arguments, a font encoding and two font family
names. It creates a font description file for the first font in the given encoding.
This . £d file will instruct IXTEX to use a font from the second family when a font
from the first family in the given encoding seems to be needed.

6.1 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files
to instruct ITEX to give a character the category code ‘active’. When a character
has been made active it will remain that way until the end of the document. Its
definition may vary.

10



\bbl@activate
\bbl@deactivate

\declare@shorthand

\bbl@add@special
\bbl@remove@special

\babel@save

\babel@savevariable

\addto

\allowhyphens

\set@low@box

\save@sfQq

\bbl@frenchspacing
\bbl@nonfrenchspacing

The command \bbl@activate is used to change the way an active character
expands. \bbl@activate ‘switches on’ the active behaviour of the character.
\bbl@deactivate lets the active character expand to its former (mostly) non-
active self.

The macro \declare@shorthand is used to define the various shorthands. It
takes three arguments: the name for the collection of shorthands this definition
belongs to; the character (sequence) that makes up the shorthand, i.e. ~ or "a;
and the code to be executed when the shorthand is encountered.

The TEXbook states: “Plain TEX includes a macro called \dospecials that
is essentially a set macro, representing the set of all characters that have a spe-
cial category code.” [l, p. 380] It is used to set text ‘verbatim’. To make this
work if more characters get a special category code, you have to add this char-
acter to the macro \dospecial. IX¥TEX adds another macro called \@sanitize
representing the same character set, but without the curly braces. The macros
\bbl@add@special(char) and \bbl@remove@special(char) add and remove the
character (char) to these two sets.

6.2 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefor
a mechanism for saving (and restoring) the original definition of those macros is
provided. We provide two macros for this'.

To save the current meaning of any control sequence, the macro \babel@save
is provided. It takes one argument, (csname), the control sequence for which the
meaning has to be saved.

A second macro is provided to save the current value of a variable. In this
context, anything that is allowed after the \the primitive is considered to be a
variable. The macro takes one argument, the (variable).

The effect of the preceding macros is to append a piece of code to the current
definition of \originalTeX. When \originalTeX is expanded, this code restores
the previous definition of the control sequence or the previous value of the variable.

6.3 Support for extending macros

The macro \addto{(control sequence)}{(TEX code)} can be used to extend the
definition of a macro. The macro need not be defined. This macro can, for
instance, be used in adding instructions to a macro like \extrasenglish.

6.4 Macros common to a number of languages

In a couple of European languages compound words are used. This means that
when TEX has to hyphenate such a compound word, it only does so at the ‘-’ that
is used in such words. To allow hyphenation in the rest of such a compound word,
the macro \allowhyphens can be used.

For some languages, quotes need to be lowered to the baseline. For this pur-
pose the macro \set@low@box is available. It takes one argument and puts that
argument in an \hbox, at the baseline. The result is available in \box0 for further
processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose
the macro \save@sf@q is available. It takes one argument, saves the current
spacefactor, executes the argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be
used to properly switch French spacing on and off.

1This mechanism was introduced by Bernd Raichle.

11



\ProvidesLanguage

7 Compatibility with german.sty

The file german. sty has been one of the sources of inspiration for the babel sys-
tem. Because of this I wanted to include german.sty in the babel system. To
be able to do that I had to allow for one incompatibility: in the definition of the
macro \selectlanguage in german.sty the argument is used as the (number)
for an \ifcase. So in this case a call to \selectlanguage might look like
\selectlanguage{\german}.

In the definition of the macro \selectlanguage in babel.def the argument
is used as a part of other macronames, so a call to \selectlanguage now looks
like \selectlanguage{german}. Notice the absence of the escape character. As
of version 3.1a of babel both syntaxes are allowed.

All other features of the original german. sty have been copied into a new file,
called germanb.sty?.

Although the babel system was developed to be used with I¥TEX, some of the
features implemented in the language definition files might be needed by plain
TEX users. Care has been taken that all files in the system can be processed by

plain TEX.

8 Compatibility with ngerman.sty

When used with the options ngerman or naustrian, babel will provide all features of
the package ngerman. There is however one exception: The commands for special
hyphenation of double consonants ("ff etc.) and ck ("ck), which are no longer
required with the new German orthography, are undefined. With the ngerman
package, however, these commands will generate appropriate warning messages
only.

9 Compatibility with the french package

It has been reported to me that the package french by Bernard Gaulle
(gaulle@idris.fr) works together with babel. On the other hand, it seems not
to work well together with a lot of other packages. Therefore I have decided to no
longer load french.1df by default. Instead, when you want to use the package by
Bernard Gaulle, you will have to request it specifically, by passing either frenchle
or frenchpro as an option to babel.

10 Identification

The file babel.sty® is meant for WIREX 2¢, therefor we make sure that the format
file used is the right one.

The identification code for each file is something that was introduced in BTEX 2¢.
When the command \ProvidesFile does not exist, a dummy definition is
provided temporarily. For use in the language definition file the command
\ProvidesLanguage is defined by babel.

10.1 (x!package)

10.2 \ifx\ProvidesFile\@undefined

10.3 \def\ProvidesFile#1[#2 #3 #41{%

10.4 \wlog{File: #1 #4 #3 <#2>}J

10.5 (xkernel & patterns)

10.6 \toks8{Babel <#3> and hyphenation patterns for }J,

10.7 (/kernel & patterns)

2The ‘b’ is added to the name to distinguish the file from Partls’ file.
3The file described in this section is called babel.dtx, has version number v3.8j and was last
revised on 2008/03/16.

12



10.8 \let\ProvidesFile\@undefined

10.9 }

As an alternative for \ProvidesFile we define \ProvidesLanguage here to be
used in the language definition files.

10.10 (xkernel)
10.11  \def\ProvidesLanguage#1[#2 #3 #4]{),

10.12 \wlog{Language: #1 #4 #3 <#2>}),
10.13 }
10.14 \else

In this case we save the original definition of \ProvidesFile in \bbl@tempa and
restore it after we have stored the version of the file in \toks8.

10.15 (xkernel & patterns)

10.16  \let\bbl@tempa\ProvidesFile

10.17  \def\ProvidesFile#1[#2 #3 #41{J,

10.18 \toks8{Babel <#3> and hyphenation patterns for }J,
10.19 \bbl@tempa#1[#2 #3 #4]},
10.20 \let\ProvidesFile\bbl@tempa}

10.21 (/kernel & patterns)
When \ProvidesFile is defined we give \ProvidesLanguage a similar definition.
10.22  \def\ProvidesLanguage#1{},

10.23 \begingroup

10.24 \catcode‘\ 10 7

10.25 \@makeother\/}

10.26 \@ifnextchar([}]

10.27 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}
10.28 \def\@provideslanguage#1 [#2]{},

10.29 \wlog{Language: #1 #2}J

10.30 \expandafter\xdef\csname ver@#1.1df\endcsname{#2}7,
10.31 \endgroup}

10.32 (/kernel)

10.33 \fi

10.34 (/!package)

Identify each file that is produced from this source file.

10.35
10.36
10.37
10.38

+package)\ProvidesPackage{babel}
+core)\ProvidesFile{babel.def}

+kernel & patterns)\ProvidesFile{hyphen.cfg}
+kernel&!patterns)\ProvidesFile{switch.def}
10.39 (-+driver&!user)\ProvidesFile{babel.drv}

10.40 (+driver & user)\ProvidesFile{user.drv}

10.41 [2008/03/16 v3.8j %

10.42 (+package) The Babel packagel

10.43 (+-core) Babel common definitions]
10.44 (+kernel) Babel language switching mechanism]
10.45 (+driver)]

o~~~ o~~~

11 The Package File

In order to make use of the features of IATEX 2¢, the babel system contains a
package file, babel.sty. This file is loaded by the \usepackage command and
defines all the language options known in the babel system. It also takes care of a
number of compatibility issues with other packages.

11.1 Language options

11.1 (xpackage)
11.2 \ifx\LdfInit\@undefined\input babel.def\relax\fi

For all the languages supported we need to declare an option.
11.3 \DeclareOption{acadian}{\input{frenchb.1df}}

13



11.4 \DeclareOption{albanian}{\input{albanian.1df}}
11.5 \DeclareOption{afrikaans}{\input{dutch.1df}}
11.6 \DeclareOption{american}{\input{english.1df}}
11.7 \DeclareOption{australian}{\input{english.1df}}

Austrian is really a dialect of German.
11.8 \DeclareOption{austrian}{\input{germanb.1df}}

11.9 \DeclareOption{bahasa}{\input{bahasai.ldf}}

.10 \DeclareOption{indonesian}{\input{bahasai.1ldf}}
.11 \DeclareOption{indon}{\input{bahasai.ldf}}

.12 \DeclareOption{bahasai}{\input{bahasai.ldf}}
.13 \DeclareOption{malay}{\input{bahasam.1df}}

.14 \DeclareOption{meyalu}{\input{bahasam.1df}}

.15 \DeclareOption{bahasam}{\input{bahasam.1df}}
.16 \DeclareOption{basque}{\input{basque.1df}}

.17 \DeclareOption{brazil}{\input{portuges.1df}}

1
1
1
1
1
1
1
1

e e e e

1
1

—

.18 \DeclareOption{brazilian}{\input{portuges.1df}}
.19 \DeclareOption{breton}{\input{breton.1df}}

[,

11.20 \DeclareOption{british}{\input{english.1df}}
11.21 \DeclareOption{bulgarian}{\input{bulgarian.1ldf}}
11.22 \DeclareOption{canadian}{\input{english.1df}}
11.23 \DeclareOption{canadien}{\input{frenchb.1df}}
11.24 \DeclareOption{catalan}{\input{catalan.1df}}
11.25 \DeclareOption{croatian}{\input{croatian.1df}}
11.26 \DeclareOption{czech}{\input{czech.1df}}

11.27 \DeclareOption{danish}{\input{danish.1df}}

11.28 \DeclareOption{dutch}{\input{dutch.1df}}

11.29 \DeclareOption{english}{\input{english.1df}}
11.30 \DeclareOption{esperanto}{\input{esperanto.1df}}
11.31 \DeclareOption{estonian}{\input{estonian.1df}}
11.32 \DeclareOption{finnish}{\input{finnish.1df}}

The babel support or French used to be stored in francais.ldf; therefor the
¥TEX2.09 option used to be francais. The hyphenation patterns may be loaded as
either ‘french’ or as ‘francais’.

11.33 \DeclareOption{francais}{\input{frenchb.1df}}

11.34 \DeclareOption{frenchb}{\input{frenchb.1df}}

With KTEX 2 we can now also use the option french and still call the file
frenchb.1df.

11.35 \DeclareOption{french}{\input{frenchb.1df}}},

11.36 \DeclareOption{galician}{\input{galician.1df}}

11.37 \DeclareOption{german}{\input{germanb.1df}}

11.38 \DeclareOption{germanb}{\input{germanb.1df}}

11.39 \DeclareOption{greek}{\input{greek.1df}}
11.40 \DeclareOption{polutonikogreek}{%

11.41  \input{greek.1ldf}},

11.42 \languageattribute{greek}{polutonikol}}

11.43 \DeclareOption{hebrew}{%
11.44 \input{rlbabel.defl}V,
11.45 \input{hebrew.ldf}}

hungarian is just a synonym for magyar
11.46 \DeclareOption{hungarian}{\input{magyar.1df}}
11.47 \DeclareOption{icelandic}{\input{icelandic.1df}}
11.48 \DeclareOption{interlingua}{\input{interlingua.ldf}}
11.49 \DeclareOption{irish}{\input{irish.1df}}
11.50 \DeclareOption{italian}{\input{italian.1df}}
11.51 \DeclareOption{latin}{\input{latin.1df}}
11.52 \DeclareOption{lowersorbian}{\input{lsorbian.1df}}
11.53 %~ ~A\DeclareOption{kannada}{\input{kannada.1ldf}}
11.54 \DeclareOption{magyar}{\input{magyar.1df}}

14



11.55 %~ ~A\DeclareOption{nagari}{\input{nagari.1ldf}}

‘New’ German orthography, including Austrian variant:
11.56 \DeclareOption{naustrian}{\input{ngermanb.1df}}
11.57 \DeclareOption{newzealand}{\input{english.1df}}
11.58 \DeclareOption{ngerman}{\input{ngermanb.1df}}
11.59 \DeclareOption{norsk}{\input{norsk.1df}}

11.60 \DeclareOption{samin}{\input{samin.1df}}

For Norwegian two spelling variants are provided.
11.61 \DeclareOption{nynorsk}{\input{norsk.1df}}
11.62 \DeclareOption{polish}{\input{polish.1df}}
11.63 \DeclareOption{portuges}{\input{portuges.1df}}
11.64 \DeclareOption{portuguese}{\input{portuges.1ldf}}
11.65 \DeclareOption{romanian}{\input{romanian.1df}}
11.66 \DeclareOption{russian}{\input{russianb.1df}}

11.67 %~ ~A\DeclareOption{sanskrit}{\input{sanskrit.1df}}
11.68 \DeclareOption{scottish}{\input{scottish.1df}}
11.69 \DeclareOption{serbian}{\input{serbian.1df}}

11.70 \DeclareOption{slovak}{\input{slovak.1ldf}}

11.71 \DeclareOption{slovene}{\input{slovene.ldf}}

11.72 \DeclareOption{spanish}{\input{spanish.1df}}

11.73 \DeclareOption{swedish}{\input{swedish.1df}}

11.74 %~ ~A\DeclareOption{tamil}{\input{tamil.1ldf}}

11.75 \DeclareOption{turkish}{\input{turkish.1df}}

11.76 \DeclareOption{ukrainian}{\input{ukraineb.1ldf}}
11.77 \DeclareOption{uppersorbian}{\input{usorbian.1df}}
11.78 \DeclareOption{welsh}{\input{welsh.1df}}

11.79 \DeclareOption{UKenglish}{\input{english.1df}}
11.80 \DeclareOption{USenglish}{\input{english.1df}}

For all those languages for which the option name is the same as the name of
the language specific file we specify a default option, which tries to load the file
specified. If this doesn’t succeed an error is signalled.

11.81 \DeclareOption*{%
11.82  \InputIfFileExists{\CurrentOption.ldf}{}{%

11.83 \PackageError{babel}{/,

11.84 Language definition file \CurrentOption.ldf not found}{%
11.85 Maybe you misspelled the language option?}}%

11.86  }

Another way to extend the list of ‘known’ options for babel is to create the file
bblopts.cfg in which one can add option declarations.

11.87 \InputIfFileExists{bblopts.cfg}{%
11.88  \typeout{Hikskskskskskskskokkokkokskkokkokkokokokok ok ok ok ok ok ko ok ook =~ JY)

11.89 * Local config file bblopts.cfg used~"J%
11.90 *}%
1191 H?}

Apart from all the language options we also have a few options that influence
the behaviour of language definition files.

The following options don’t do anything themselves, they are just defined in
order to make it possible for language definition files to check if one of them was
specified by the user.

11.92 \DeclareOption{activeacute}{}
11.93 \DeclareOption{activegrave}{}

The next option tells babel to leave shorthand characters active at the end of
processing the package. This is not the default as it can cause problems with
other packages, but for those who want to use the shorthand characters in the
preamble of their documents this can help.

11.94 \DeclareOption{KeepShorthandsActive}{}

The options have to be processed in the order in which the user specified them:
11.95 \ProcessOptions*

15



In order to catch the case where the user forgot to specify a language we check
whether \bbl@main@language, has become defined. If not, no language has been
loaded and an error message is displayed.

11.96 \ifx\bbl@main@language\@undefined

11.97
11.98
11.99
11.100
11.101
11.102
11.103

\PackageError{babell}{},

You haven’t specified a language option}{%

You need to specify a language, either as a global
option\MessageBreak

or as an optional argument to the \string\usepackage\space
command; \MessageBreak

You shouldn’t try to proceed from here, type x to quit.}

To prevent undefined command errors when the user insists on continuing we load
babel.def here. He should expect more errors though.

11.104

\input{babel.def}
11.105 \fi

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first
argument is an encoding mnemonic, the second and third arguments are font
family names.

11.106 \def\substitutefontfamily#1#2#3{}%

11.107
11.108
11.109
11.110
11.111
11.112
11.113
11.114
11.115
11.116
11.117
11.118
11.119
11.120
11.121
11.122
11.123

\lowercase{\immediate\openout15=#1#2.fd\relax}/,
\immediate\writel15{%

\string\ProvidesFile{#1#2.£d}},

[\the\year/\two@digits{\the\month}/\two@digits{\the\day}

\space generated font description file]~"J
\string\DeclareFontFamily{#1}{#2}{}~~J
\string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}~"J
\string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}~"J
\string\DeclareFontShape{#1}{#2}m}{s1}{<->ssub * #3/m/s1}{}~"J
\string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}~~J
\string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}~~J
\string\DeclareFontShape{#1}{#2}b}{it}{<->ssub * #3/bx/it}{}~~J
\string\DeclareFontShape{#1}{#2}{b}{s1}{<->ssub * #3/bx/sl}{}~"J
\string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}~"J
Y

\closeouti15

This command should only be used in the preamble of a document.

11.124 \Q@onlypreamble\substitutefontfamily

11.125 (/package)

12 The Kernel of Babel

The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file hyphen.cfg is a file that can be loaded into the format,
which is necessary when you want to be able to switch hyphenation patterns.
The file babel.def contains some TEX code that can be read in at run time.
When babel.def is loaded it checks if hyphen.cfg is in the format; if not the file
switch.def is loaded.

Because plain TEX users might want to use some of the features of the babel
system too, care has to be taken that plain TEX can process the files. For this
reason the current format will have to be checked in a number of places. Some
of the code below is common to plain TEX and I*TEX, some of it is for the ITEX
case only.

When the command \AtBeginDocument doesn’t exist we assume that we are
dealing with a plain-based format. In that case the file plain.def is needed.

12.1 (xkernel | core)
12.2 \ifx\AtBeginDocument\@undefined

16



\latinencoding

\latintext

\textlatin

But we need to use the second part of plain.def (when we load it from
switch.def) which we can do by defining \adddialect.

12.3 (kernel&!patterns) \def\adddialect{}

12.4 \input plain.defl\relax

12.5 \fi

12.6 (/kernel | core)

Check the presence of the command \iflanguage, if it is undefined read the

file switch.def.

12.7 (xcore)

12.8 \ifx\iflanguage\@undefined

12.9  \input switch.def\relax
12.10 \fi
12.11 (/core)

12.1 Encoding issues (part 1)

The first thing we need to do is to determine, at \begin{document}, which latin
fontencoding to use.

When text is being typeset in an encoding other than ‘latin’ (0T1 or T1), it would
be nice to still have Roman numerals come out in the Latin encoding. So we first
assume that the current encoding at the end of processing the package is the Latin
encoding.

12.12 (xcore)

12.13 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}
But this might be overruled with a later loading of the package fontenc. Therefor
we check at the execution of \begin{document} whether it was loaded with the
T1 option. The normal way to do this (using \@ifpackageloaded) is disabled for
this package. Now we have to revert to parsing the internal macro \@filelist
which contains all the filenames loaded.

12.14 \AtBeginDocument{}

12.15 \gdef\latinencoding{0T1}%
12.16  \ifx\cf@encoding\bbl@t@one

12.17 \xdef\latinencoding{\bbl@t@one}/,

12.18  \else

12.19 \@ifl@aded{def}{tlenc}{\xdef\latinencoding{\bbl@t@one}}{}7
12.20  \fi

12.21  }

Then we can define the command \latintext which is a declarative switch to a
latin font-encoding.

12.22 \DeclareRobustCommand{\latintext}{%

12.23 \fontencoding{\latinencoding}\selectfont

12.24 \def\encodingdefault{\latinencoding}}

This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

12.25 \ifx\@Qundefined\DeclareTextFontCommand

12.26 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

12.27 \else

12.28 \DeclareTextFontCommand{\textlatin}{\latintext}

12.29 \fi

12.30 (/core)

We also need to redefine a number of commands to ensure that the right font
encoding is used, but this can’t be done before babel.def is loaded.

17



\language

\last@language

12.2 Multiple languages

With TEX version 3.0 it has become possible to load hyphenation patterns for more
than one language. This means that some extra administration has to be taken
care of. The user has to know for which languages patterns have been loaded, and
what values of \language have been used.

Some discussion has been going on in the TEX world about how to use
\language. Some have suggested to set a fixed standard, i.e., patterns for each
language should always be loaded in the same location. It has also been suggested
to use the 180 list for this purpose. Others have pointed out that the 1SO list
contains more than 256 languages, which have not been numbered consecutively.

I think the best way to use \language, is to use it dynamically. This code
implements an algorithm to do so. It uses an external file in which the person who
maintains a TEX environment has to record for which languages he has hyphen-
ation patterns and in which files these are stored*. When hyphenation exceptions
are stored in a separate file this can be indicated by naming that file after the file
with the hyphenation patterns.

This “configuration file” can contain empty lines and comments, as well as
lines which start with an equals (=) sign. Such a line will instruct IXTEX that the
hyphenation patterns just processed have to be known under an alternative name.
Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger

As the file switch.def needs to be read only once, we check whether it was
read before. If it was, the command \iflanguage is already defined, so we can
stop processing.

12.31 (xkernel)

12.32 (*!patterns)

12.33 \expandafter\ifx\csname iflanguage\endcsname\relax \else
12.34 \expandafter\endinput

12.35 \fi

12.36 (/!patterns)

Plain TEX version 3.0 provides the primitive \language that is used to store
the current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter.

12.37 \ifx\language\Qundefined

12.38 \csname newcount\endcsname\language

12.39 \fi

Another counter is used to store the last language defined. For pre-3.0 formats an
extra counter has to be allocated,

12.40 \ifx\newlanguage\@undefined

12.41 \csname newcount\endcsname\last@language
plain TEX version 3.0 uses \count 19 for this purpose.

12.42 \else
12.43  \countdef\last@language=19
12.44 \fi

4This is because different operating systems sometimes use very different file-naming conven-
tions.

18



\addlanguage

\adddialect

\iflanguage

\selectlanguage

To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage,
in a pre-3.0 environment a similar macro has to be provided. For both cases a
new macro is defined here, because the original \newlanguage was defined to be
\outer.

For a format based on plain version 2.x, the definition of \newlanguage can
not be copied because \count 19 is used for other purposes in these formats.
Therefor \addlanguage is defined using a definition based on the macros used to
define \newlanguage in plain TEX version 3.0.

12.45 \ifx\newlanguage\Qundefined
12.46  \def\addlanguage#1{J,
12.47 \globalladvance\last@language \G@ne

12.48 \ifnum\last@language<\@cclvi

12.49 \else

12.50 \errmessage{No room for a new \string\language!l}J
12.51 \fi

12.52 \global\chardef#1\last@language

12.53 \wlog{\string#1l = \string\language\the\last@languagel}}

For formats based on plain version 3.0 the definition of \newlanguage can be
simply copied, removing \outer.
12.54 \else

12.55 \def\addlanguage{\alloc@9\language\chardef\@cclvi}
12.56 \fi

The macro \adddialect can be used to add the name of a dialect or variant
language, for which an already defined hyphenation table can be used.
12.57 \def\adddialect#1#2{%

12.58 \global\chardef#1#2\relax
12.59 \wlog{\string#l = a dialect from \string\language#2}}

Users might want to test (in a private package for instance) which language is
currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on
the result of the comparison, it executes either the second or the third argument.

12.60 \def\iflanguage#1{/,
12.61 \expandafter\ifx\csname 1@#1\endcsname\relax

12.62 \@nolanerr{#1}/,

12.63 \else

12.64 \bbl@afterfi{\ifnum\csname 1@#1\endcsname=\language
12.65 \expandafter\@firstoftwo

12.66 \else

12.67 \expandafter\@secondoftwo

12.68 \fi}}

12.69 \fi}

The macro \selectlanguage checks whether the language is already defined
before it performs its actual task, which is to update \language and activate
language-specific definitions.

To allow the call of \selectlanguage either with a control sequence name or
with a simple string as argument, we have to use a trick to delete the optional
escape character.

To convert a control sequence to a string, we use the \string primitive. Next
we have to look at the first character of this string and compare it with the escape
character. Because this escape character can be changed by setting the internal
integer \escapechar to a character number, we have to compare this number with
the character of the string. To do this we have to use TEX’s backquote notation
to specify the character as a number.

19



\bbl@pop@language

\bbl@language@stack

\bbl@push@language
\bbl@pop@language

\bbl@pop@lang

If the first character of the \string’ed argument is the current escape char-
acter, the comparison has stripped this character and the rest in the ‘then’ part
consists of the rest of the control sequence name. Otherwise we know that either
the argument is not a control sequence or \escapechar is set to a value outside
of the character range 0-255.

If the user gives an empty argument, we provide a default argument for
\string. This argument should expand to nothing.

12.70 \edef\selectlanguage{’,

12.71  \noexpand\protect

12.72  \expandafter\noexpand\csname selectlanguage \endcsname
12.73  }

Because the command \selectlanguage could be used in a moving argument it
expands to \protect\selectlanguage . Therefor, we have to make sure that a
macro \protect exists. If it doesn’t it is \let to \relax.

12.74 \ifx\@undefined\protect\let\protect\relax\fi

As ITEX 2.09 writes to files expanded whereas INTEX 2¢ takes care not to expand
the arguments of \write statements we need to be a bit clever about the way we
add information to .aux files. Therefor we introduce the macro \xstring which
should expand to the right amount of \string’s.

12.75 \ifx\documentclass\@Qundefined

12.76  \def\xstring{\string\string\string}

12.77 \else

12.78  \let\xstring\string

12.79 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset
table of contents etc. in the correct language environment.

But when the language change happens inside a group the end of the group
doesn’t write anything to the auxiliary files. Therefor we need TEX’s aftergroup
mechanism to help us. The command \aftergroup stores the token immediately
following it to be executed when the current group is closed. So we define a
temporary control sequence \bbl@pop@language to be executed at the end of the
group. It calls \bbl@set@language with the name of the current language as its
argument.

The previous solution works for one level of nesting groups, but as soon as
more levels are used it is no longer adequate. For that case we need to keep
track of the nested languages using a stack mechanism. This stack is called
\bbl@language@stack and initially empty.

12.80 \xdef\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to
retrieve the information afterwards.

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

12.81 \def\bbl@push@language{%

12.82 \xdef\bbl@language@stack{\languagename+\bbl@language@stackl}’

12.83  }
Retrieving information from the stack is a little bit less simple, as we need to
remove the element from the stack while storing it in the macro \languagename.
For this we first define a helper function.

This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string (delimited by ‘-’) in its third
argument.

12.84 \def\bbl@pop@lang#1+#2-#3{Y

12.85 \def\languagename{#1}\xdef#3{#21}/,

12.86  }

20



\bbl@set@language

The reason for the somewhat weird arrangement of arguments to the helper func-
tion is the fact it is called in the following way:

12.87 \def\bbl@pop@language{’
12.88 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack

This means that before \bbl@pop@lang is executed TEX first expands the stack,
stored in \bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign
(zero language names won’t occur as this macro will only be called after something
has been pushed on the stack) followed by the ‘-’-sign and finally the reference to
the stack.

12.89 $$

12.90 \expandafter\bbl@set@language\expandafter{\languagenamel},

12.91  }

Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs
switching.

12.92 \expandafter\def\csname selectlanguage \endcsname#1{},
12.93  \bbl@push@language

12.94 \aftergroup\bbl@pop@language

12.95 \bbl@set@language{#1}}

The macro \bbl@set@language takes care of switching the language environment
and of writing entries on the auxiliary files.

12.96 \def\bbl@set@language#1{J

12.97 \edef\languagename{/,

12.98 \ifnum\escapechar=\expandafter‘\string#1\Q@empty

12.99 \else \string#1\Qempty\fil}J,

12.100 \select@language{\languagenamel,
We also write a command to change the current language in the auxiliary files.

12.101  \if@filesw

12.102 \protected@urite\Qauxout{}{\string\select@language{\languagename}}/,
12.103 \addtocontents{toc}{\xstring\select@language{\languagenamel}}/,
12.104 \addtocontents{lof}{\xstring\select@language{\languagename}}
12.105 \addtocontents{lot}{\xstring\select@language{\languagenamel}}%

12.106  \fi}

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring TEX in a certain pre-defined state.

12.107 \def\select@language#1{/,
12.108  \expandafter\ifx\csname 1@#1\endcsname\relax

12.109 \@nolanerr{#1}%

12.110 \else

12.111 \expandafter\ifx\csname date#1\endcsname\relax
12.112 \@noopterr{#1}%

12.113 \else

12.114 \language=\csname 10#1\endcsname\relax

12.115 \originalTeX

The name of the language is stored in the control sequence \languagename. The
contents of this control sequence could be tested in the following way:

\edef\tmp{\string english}
\ifx\languagename\tmp

\else

\fi

21



The construction with \string is necessary because \languagename returns the
name with characters of category code 12 (other). Then we have to redefine
\originalTeX to compensate for the things that have been activated. To save
memory space for the macro definition of \originalTeX, we construct the control
sequence name for the \noextras(lang) command at definition time by expanding
the \csname primitive.

12.116 \expandafter\def\expandafter\originalTeX
12.117 \expandafter{\csname noextras#1\endcsname
12.118 \let\originalTeX\@emptyl}’
12.119 \languageshorthands{nonel}y,

12.120 \babel@beginsave

Now activate the language-specific definitions. This is done by constructing
the names of three macros by concatenating three words with the argument of
\selectlanguage, and calling these macros.

12.121 \csname captions#1\endcsname
12.122 \csname date#1\endcsname
12.123 \csname extras#1\endcsname\relax

The switching of the values of \lefthyphenmin and \righthyphenmin is some-
what different. First we save their current values, then we check if \(lang)hyphenmins
is defined. If it is not, we set default values (2 and 3), otherwise the values in
\(lang)hyphenmins will be used.

12.124 \babel@savevariable\lefthyphenmin

12.125 \babel@savevariable\righthyphenmin

12.126 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.127 \set@hyphenmins\tw@\thre@\relax

12.128 \else

12.129 \expandafter\expandafter\expandafter\set@hyphenmins
12.130 \csname #1lhyphenmins\endcsname\relax

12.131 \fi

12.132 \fi

12.133  \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document
which mixes left-to-right and right-to-left typesetting you have to use this envi-
ronment in order to let things work as you expect them to.

The first thing this environment does is store the name of the language in
\languagename; it then calls \selectlanguage  to switch on everything that is
needed for this language The \ignorespaces command is necessary to hide the
environment when it is entered in horizontal mode.

12.134 \long\def\otherlanguage#1{/,

12.135 \csname selectlanguage \endcsname{#11}J,

12.136  \ignorespaces

12,137}
The \endotherlanguage part of the environment calls \originalTeX to restore
(most of) the settings and tries to hide itself when it is called in horizontal mode.

12.138 \long\def\endotherlanguage{’

12.139  \originalTeX

12.140 \global\@ignoretrue\ignorespaces
12.141  }

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from
a different language needs to be typeset, but without changing the translation of
words such as ‘figure’.
This environment makes use of \foreign@language.
12.142 \expandafter\def\csname otherlanguage*\endcsname#1{/
12.143 \foreign@language{#1}%
12.144 }

22



At the end of the environment we need to switch off the extra definitions. The
grouping mechanism of the environment will take care of resetting the correct
hyphenation rules.

12.145 \expandafter\def\csname endotherlanguage*\endcsname{’

12.146  \csname noextras\languagename\endcsname

12.147  }

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage
command. This command takes two arguments, the first argument is the name of
the language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only
switches the hyphenation rules and the extra definitions for the language specified.
It does this within a group and assumes the \extras(lang) command doesn’t make
any \global changes. The coding is very similar to part of \selectlanguage.

12.148 \def\foreignlanguage{\protect\csname foreignlanguage \endcsname}
12.149 \expandafter\def\csname foreignlanguage \endcsname#1#2{%
12.150  \begingroup

12.151 \originalTeX

12.152 \foreign@language{#1}/,

12.153 #2,

12.154 \csname noextras#1\endcsname
12.155 \endgroup

12.156 1}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environ-
ment.

12.157 \def\foreign@language#1{/,
First we need to store the name of the language and check that it is a known
language.

12.158 \def\languagename{#1}7,

12.159  \expandafter\ifx\csname 1@#1\endcsname\relax
12.160 \@nolanerr{#1}},

12.161  \else

If it is we can select the proper hyphenation table and switch on the extra defini-
tions for this language.

12.162 \language=\csname 1@#1\endcsname\relax
12.163 \languageshorthands{nonel}y,

Then we set the left- and right hyphenmin variables.

12.164 \csname extras#1l\endcsname

12.165 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.166 \set@hyphenmins\tw0\thre@\relax

12.167 \else

12.168 \expandafter\expandafter\expandafter\set@hyphenmins
12.169 \csname #1lhyphenmins\endcsname\relax

12.170 \fi

12171 \fi

12172}

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules.
This environment does not change \languagename and when the hyphenation
rules specified were not loaded it has no effect.

12.173 \def\hyphenrules#1{}
12.174 \expandafter\ifx\csname 1@#1\endcsname\Qundefined

12.175 \@nolanerr{#1}%

12.176  \else

12.177 \language=\csname 1@#1\endcsname\relax

12.178 \languageshorthands{none}},

12.179 \expandafter\ifx\csname #1lhyphenmins\endcsname\relax
12.180 \set@hyphenmins\tw@\thr@@\relax

23



\providehyphenmins

\set@hyphenmins

\LdfInit

12.181 \else

12.182 \expandafter\expandafter\expandafter\set@hyphenmins
12.183 \csname #lhyphenmins\endcsname\relax

12.184 \fi

12.185  \fi

12.186  }

12.187 \def\endhyphenrules{}

The macro \providehyphenmins should be used in the language definition files
to provide a default setting for the hyphenation parameters \lefthyphenmin and
\righthyphenmin. If the macro \(lang)hyphenmins is already defined this com-
mand has no effect.

12.188 \def\providehyphenmins#1#2{%

12.189  \expandafter\ifx\csname #lhyphenmins\endcsname\relax

12.190 \@namedef{#1hyphenmins}{#2}%

12.191  \fi}

This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects
two values as its argument.

12.192 \def\set@hyphenmins#1#2{\lefthyphenmin#1\righthyphenmin#2}

This macro is defined in two versions. The first version is to be part of the ‘kernel’
of babel, ie. the part that is loaded in the format; the second version is defined
in babel.def. The version in the format just checks the category code of the
ampersand and then loads babel.def.

12.193 \def\LdfInit{%

12.194 \chardef\atcatcode=\catcode‘\@

12.195 \catcode‘\@=11\relax

12.196  \input babel.def\relax

The category code of the ampersand is restored and the macro calls itself again
with the new definition from babel.def

12.197 \catcode‘\@=\atcatcode \let\atcatcode\relax

12.198  \LdfInit}

12.199 (/kernel)

The second version of this macro takes two arguments. The first argument is the
name of the language that will be defined in the language definition file; the second
argument is either a control sequence or a string from which a control sequence
should be constructed. The existence of the control sequence indicates that the
file has been processed before.

At the start of processing a language definition file we always check the category
code of the ampersand. We make sure that it is a ‘letter’ during the processing of
the file.

12.200 (*core)

12.201 \def\LdfInit#1#2{%

12.202  \chardef\atcatcode=\catcode‘\@

12.203 \catcode‘\@=11\relax
Another character that needs to have the correct category code during processing
of language definition files is the equals sign, ‘=", because it is sometimes used in
constructions with the \let primitive. Therefor we store its current catcode and
restore it later on.

12.204 \chardef\eqcatcode=\catcode‘\=

12.205 \catcode‘\==12\relax

Now we check whether we should perhaps stop the processing of this file. To do
this we first need to check whether the second argument that is passed to \LdfInit
is a control sequence. We do that by looking at the first token after passing #2
through string. When it is equal to \@backslashchar we are dealing with a
control sequence which we can compare with \@undefined.

12.206  \let\bbl@tempa\relax

24



12.207 \expandafter\if\expandafter\@backslashchar

12.208 \expandafter\Qcar\string#2\0@nil
12.209 \ifx#2\@undefined
12.210 \else

If so, we call \1df@quit (but after the end of this \if construction) to set the
main language, restore the category code of the @-sign and call \endinput.

12.211 \def\bbl@tempa{\ldf@quit{#1}}
12.212 \fi
12.213  \else

When #2 was not a control sequence we construct one and compare it with \relax.

12.214 \expandafter\ifx\csname#2\endcsname\relax
12.215 \else

12.216 \def\bbl@tempa{\ldf@quit{#1}}

12.217 \fi

12.218  \fi

12.219  \bbl@tempa
Finally we check \originalTeX.
12.220 \ifx\originalTeX\Qundefined

12.221 \let\originalTeX\@empty
12.222  \else
12.223 \originalTeX

12.224 \fi}

\ldfequit This macro interrupts the processing of a language definition file.
12.225 \def\1ldf@quit#1{%
12.226  \expandafter\main@language\expandafter{#1}/
12.227 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.228 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.229  \endinput
12.230 }

\ldfefinish This macro takes one argument. It is the name of the language that was defined
in the language definition file.

We load the local configuration file if one is present, we set the main language
(taking into account that the argument might be a control sequence that needs to
be expanded) and reset the category code of the @-sign.

12.231 \def\ldf@finish#1{%

12.232  \loadlocalcfg{#1}/

12.233  \expandafter\main@language\expandafter{#1}J,
12.234 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.235 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12236}

After the preamble of the document the commands \LdfInit, \1df@quit and
\1df@finish are no longer needed. Therefor they are turned into warning mes-
sages in ITEX.

12.237 \Q@onlypreamble\LdfInit
12.238 \Qonlypreamble\1df@quit
12.239 \Q@onlypreamble\1df@finish

\main@language This command should be used in the various language definition files. It stores its
\bbl@main@language argument in \bbl@main@language; to be used to switch to the correct language
at the beginning of the document.
12.240 \def\main@language#1{/,
12.241 \def\bbl@main@language{#1}/
12.242 \let\languagename\bbl@main@language
12.243  \language=\csname 10@\languagename\endcsname\relax
12.244 }

25



The default is to use English as the main language.

12.245 \ifx\1@english\@undefined

12.246  \let\l@english\z@

12.247 \fi

12.248 \main@language{english}
We also have to make sure that some code gets executed at the beginning of the
document.

12.249 \AtBeginDocument{/,

12.250  \expandafter\selectlanguage\expandafter{\bbl@main@language}}

12.251 (/core)

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to
be expandable we \let it to \@empty instead of \relax.
12.252 (xkernel)
12.253 \ifx\originalTeX\@undefined\let\originalTeX\Q@empty\fi
Because this part of the code can be included in a format, we make sure that the
macro which initialises the save mechanism, \babel@beginsave, is not considered
to be undefined.

12.254 \ifx\babel@beginsave\Qundefined\let\babel@beginsave\relax\fi

\@nolanerr The babel package will signal an error when a documents tries to select a language
\@nopatterns that hasn’t been defined earlier. When a user selects a language for which no
hyphenation patterns were loaded into the format he will be given a warning
about that fact. We revert to the patterns for \language=0 in that case. In most

formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as ex-
pected. An error message is issued in that case.
When the format knows about \PackageError it must be ITEX 2¢, so we can
safely use its error handling interface. Otherwise we’ll have to ‘keep it simple’.
12.255 \ifx\PackageError\Qundefined
12.256  \def\@nolanerr#1{}

12.257 \errhelp{Your command will be ignored, type <return> to proceedl}’
12.258 \errmessage{You haven’t defined the language #1\space yet}}

12.259  \def\@nopatterns#1{/,

12.260 \message{No hyphenation patterns were loaded forlJ,

12.261 \message{the language ‘#1’}}

12.262 \message{I will use the patterns loaded for \string\language=0
12.263 instead}’}

12.264 \def\@noopterr#1{/

12.265 \errmessage{The option #1 was not specified in \string\usepackage}
12.266 \errhelp{You may continue, but expect unexpected resultsl}}

12.267 \def\@activated#1{},

12.268 \wlog{Package babel Info: Making #1 an active character}}

12.269 \else
12.270 \newcommand*{\@nolanerr}[1]1{%

12.271 \PackageError{babell}/,

12.272 {You haven’t defined the language #1\space yetl}%
12.273 {Your command will be ignored, type <return> to proceed}}
12.274 \newcommand*{\@nopatterns}[1]{%

12.275 \PackageWarningNoLine{babel}}

12.276 {No hyphenation patterns were loaded for\MessageBreak
12.277 the language ‘#1’\MessageBreak

12.278 I will use the patterns loaded for \string\language=0
12.279 instead}}

12.280 \newcommand*{\@noopterr}[1]{%

12.281 \PackageError{babell}},

12.282 {You haven’t loaded the option #1\space yetl}/
12.283 {You may proceed, but expect unexpected resultsl}}

12.284 \newcommand*{\Q@activated}[1]{%

26



\process@line

12.285 \PackageInfo{babel}{%
12.286 Making #1 an active character}}
12.287 \fi

The following code is meant to be read by iniTEX because it should instruct
TEX to read hyphenation patterns. To this end the docstrip option patterns
can be used to include this code in the file hyphen.cfg.

12.288 (*patterns)

Each line in the file language .dat is processed by \process@line after it is read.
The first thing this macro does is to check whether the line starts with =. When
the first token of a line is an =, the macro \process@synonymn is called; otherwise
the macro \process@language will continue.

12.289 \def\process@line#1#2 #3/{,
12.290  \ifx=#1

12.291 \process@synonym#2 /

12.292 \else

12.293 \process@language#1#2 #3/7,
12.294  \fi

12.295  }

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token

\process@language

register to begin with.
12.296 \toks@{}

12.297 \def\process@synonym#1 /{}
12.298  \ifnum\last@language=\m@ne

When no languages have been loaded yet, the name following the = will be a
synonym for hyphenation register 0.

12.299 \expandafter\chardef\csname 10#1\endcsnameO\relax

12.300 \wlog{\string\1@#1=\string\languageO}
As no hyphenation patterns are read in yet, we can not yet set the hyphenmin
parameters. Therefor a commands to do so is stored in a token register and
executed when the first pattern file has been processed.

12.301 \toks@\expandafter{\the\toks@
12.302 \expandafter\let\csname #1lhyphenmins\expandafter\endcsname
12.303 \csname\languagename hyphenmins\endcsnamel}j,

12.304 \else

Otherwise the name will be a synonym for the language loaded last.

12.305 \expandafter\chardef\csname 10#1\endcsname\last@language
12.306 \wlog{\string\l1@#1=\string\language\the\last@language}
We also need to copy the hyphenmin parameters for the synonym.
12.307 \expandafter\let\csname #1hyphenmins\expandafter\endcsname
12.308 \csname\languagename hyphenmins\endcsname
12.309  \fi
12.310 }
The macro \process@language is used to process a non-empty line from the ‘con-

figuration file’. It has three arguments, each delimited by white space. The third
argument is optional, so a / character is expected to delimit the last argument.
The first argument is the ‘name’ of a language; the second is the name of the
file that contains the patterns. The optional third argument is the name of a file
containing hyphenation exceptions.
The first thing to do is call \addlanguage to allocate a pattern register and

to make that register ‘active’.

12.311 \def\process@language#1 #2 #3/{},

12.312 \expandafter\addlanguage\csname 1@#1\endcsname

12.313  \expandafter\language\csname 1@#1\endcsname

12.314  \def\languagename{#1}},

27



Then the ‘name’ of the language that will be loaded now is added to the token
register \toks8. and finally the pattern file is read.

12.315  \global\toks8\expandafter{\the\toks8#1, }/
For some hyphenation patterns it is needed to load them with a specific font
encoding selected. This can be specified in the file language.dat by adding for
instance ‘:T1’ to the name of the language. The macro \bbl@get@enc extracts
the font encoding from the language name and stores it in \bbl@hyph@enc.

12.316  \begingroup

12.317 \bbl@get@enc#1:\00Q

12.318 \ifx\bbl@hyph@enc\Q@empty

12.319 \else

12.320 \fontencoding{\bbl@hyph@enc}\selectfont
12.321 \fi

Some pattern files contain assignments to \1lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefor we try to detect such as-
signments and store them in the \(lang)hyphenmins macro. When no assignments
were made we provide a default setting.
12.322 \lefthyphenmin\m@ne

Some pattern files contain changes to the \lccode en \uccode arrays. Such
changes should remain local to the language; therefor we process the pattern file
in a group; the \patterns command acts globally so its effect will be remembered.

12.323 \input #2\relax

Now we globally store the settings of \lefthyphenmin and \righthyphenmin and
close the group.

12.324 \ifnum\lefthyphenmin=\m@ne

12.325 \else

12.326 \expandafter\xdef\csname #1hyphenmins\endcsname{7,
12.327 \the\lefthyphenmin\the\righthyphenmin}y,

12.328 \fi

12.329  \endgroup

If the counter \language is still equal to zero we set the hyphenmin parameters
to the values for the language loaded on pattern register 0.

12.330  \ifnum\the\language=\z@

12.331 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.332 \set@hyphenmins\tw@\thr@@\relax

12.333 \else

12.334 \expandafter\expandafter\expandafter\set@hyphenmins
12.335 \csname #1hyphenmins\endcsname

12.336 \fi

Now execute the contents of token register zero as it may contain commands
which set the hyphenmin parameters for synonyms that were defined before the
first pattern file is read in.

12.337 \the\toks@
12.338  \fi

Empty the token register after use.

12.339  \toks@{}/
When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third argument
is not empty and when it does not contain a space token.

12.340  \def\bbl@tempa{#3}/,

12.341  \ifx\bbl@tempa\@empty
12.342  \else

12.343 \ifx\bbl@tempa\space
12.344 \else
12.345 \input #3\relax

28



12.346 \fi
12.347  \fi
12.348 }

\bbleget@enc The macro \bbl@get@enc extracts the font encoding from the language name and
\bblGhyph@enc Stores it in \bbl@hyphQenc. It uses delimited arguments to achieve this.
12.349 \def\bbl@get@enc#1:#2\00C{},

First store both arguments in temporary macros,

12.350  \def\bbl@tempa{#1}
12.351  \def\bbl@tempb{#2}

then, if the second argument was empty, no font encoding was specified and we’re
done.

12.352  \ifx\bbl@tempb\Qempty

12.353 \let\bbl@hyph@enc\Q@empty

12.354 \else

But if the second argument was not empty it will now have a superfluous colon
attached to it which we need to remove. This done by feeding it to \bbl@get@enc.
The string that we are after will then be in the first argument and be stored in

\bbl@tempa.
12.355 \bbl@get@enc#2\00Q
12.356 \edef\bblOhyph@enc{\bbl@tempal}
12.357  \fi}

\readconfigfile The configuration file can now be opened for reading.
12.358 \openinl = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The
user will be informed about this.

12.359 \ifeof1

12.360  \message{I couldn’t find the file language.dat, \space
12.361 I will try the file hyphen.tex}

12.362  \input hyphen.tex\relax

12.363 \else

Pattern registers are allocated using count register \last@language. Its initial
value is 0. The definition of the macro \newlanguage is such that it first incre-
ments the count register and then defines the language. In order to have the first
patterns loaded in pattern register number 0 we initialize \last@language with
the value —1.

12.364 \last@language\m@ne
We now read lines from the file until the end is found
12.365 \loop

While reading from the input, it is useful to switch off recognition of the end-
of-line character. This saves us stripping off spaces from the contents of the control

sequence.

12.366 \endlinechar\m@ne
12.367 \readl to \bbl@line
12.368 \endlinechar‘\~~M

Empty lines are skipped.
12.369 \ifx\bbl@line\@empty
12.370 \else

Now we add a space and a / character to the end of \bbl@line. This is needed
to be able to recognize the third, optional, argument of \process@language later

on.
12.371 \edef\bbl@line{\bbl@line\space/}/,
12.372 \expandafter\process@line\bbl@line
12.373 \fi

29



\bbl@add@special

Check for the end of the file. To avoid a new if control sequence we create
the necessary \iftrue or \iffalse with the help of \csname. But there is one
complication with this approach: when skipping the loop...repeat TEX has to
read \if /\fi pairs. So we have to insert a ‘dummy’ \iftrue.

12.374 \iftrue \csname fi\endcsname
12.375 \csname if\ifeofl false\else true\fi\endcsname
12.376  \repeat

Reactivate the default patterns,

12.377  \language=0
12.378 \fi

and close the configuration file.
12.379 \closeinl

Also remove some macros from memory
12.380 \let\process@language\@undefined
12.381 \let\process@synonym\@undefined
12.382 \let\process@line\@undefined
12.383 \let\bbl@tempa\Qundefined
12.384 \let\bbl@tempb\Qundefined
12.385 \let\bbl@eq@\@undefined

12.386 \let\bbl@line\@undefined
12.387 \let\bbl@get@enc\O@undefined

We add a message about the fact that babel is loaded in the format and with
which language patterns to the \everyjob register.
12.388 \ifx\addto@hook\Qundefined
12.389 \else
12.390  \expandafter\addto@hook\expandafter\everyjob\expandafter{y,
12.391 \expandafter\typeout\expandafter{\the\toks8 loaded.}}
12.392 \fi
Here the code for iniTEX ends.

12.393 (/patterns)
12.394 (/kernel)

12.3 Support for active characters

The macro \bbl@add@special is used to add a new character (or single character
control sequence) to the macro \dospecials (and \@sanitize if IXTEX is used).
To keep all changes local, we begin a new group. Then we redefine the macros

\do and \@makeother to add themselves and the given character without expan-
sion.

12.395 (*core | shorthands)

12.396 \def\bbl@add@special#1{\begingroup

12.397 \def\do{\noexpand\do\noexpandl}y,

12.398 \def\@makeother{\noexpand\@makeother\noexpandl}/,
To add the character to the macros, we expand the original macros with the
additional character inside the redefinition of the macros. Because \@sanitize
can be undefined, we put the definition inside a conditional.

12.399 \edef\x{\endgroup

12.400 \def\noexpand\dospecials{\dospecials\do#1}J,

12.401 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.402 \def\noexpand\@sanitize{\@sanitize\@makeother#1}J,
12.403 \£i}%

The macro \x contains at this moment the following:
\endgroup\def\dospecials{old contents \do{char)}.
If \@sanitize is defined, it contains an additional definition of this macro.
The last thing we have to do, is the expansion of \x. Then \endgroup is executed,

30



\bbl@remove@special

\initiate@active@char

\bbl@afterelse
\bbl@afterfi

\peek@token

which restores the old meaning of \x, \do and \@makeother. After the group is
closed, the new definition of \dospecials (and \@sanitize) is assigned.

12.404 \x}

The companion of the former macro is \bbl@remove@special. It is used to remove
a character from the set macros \dospecials and \@sanitize.

To keep all changes local, we begin a new group. Then we define a help macro
\x, which expands to empty if the characters match, otherwise it expands to its
nonexpandable input. Because TEX inserts a \relax, if the corresponding \else
or \fi is scanned before the comparison is evaluated, we provide a ‘stop sign’
which should expand to nothing.

12.405 \def\bbl@remove@special#1{\begingroup
12.406 \def\x##1##2{\ifnum‘#1="*##2\noexpand\@empty
12.407 \else\noexpand##1\noexpand##2\fi}J,

With the help of this macro we define \do and \make@other.

12.408 \def\do{\x\do}%

12.409 \def \@makeother{\x\@makeother}y,
The rest of the work is similar to \bbl@add@special.
12.410 \edef\x{\endgroup
12.411 \def\noexpand\dospecials{\dospecials}%
12.412 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.413 \def\noexpand\@sanitize{\@sanitizel}
12.414 \fil}%
12.415  \x}

12.4 Shorthands

A language definition file can call this macro to make a character active. This
macro takes one argument, the character that is to be made active. When the
character was already active this macro does nothing. Otherwise, this macro
defines the control sequence \normal@char(char) to expand to the character in its
‘normal state’ and it defines the active character to expand to \normal@char(char)
by default ({char) being the character to be made active). Later its definition can
be changed to expand to \active@char(char) by calling \bbl@activate{(char)}.

For example, to make the double quote character active one could have the
following line in a language definition file:

\initiate@active@char{"}

Because the code that is used in the handling of active characters may need to
look ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an
\if-statement®. These macros will break if another \if...\fi statement appears
in one of the arguments.

12.416 \long\def\bblOafterelse#1\else#2\fi{\fi#1}
12.417 \long\def\bbl@afterfi#1\fi{\fi#1}

To prevent error messages when a shorthand, which normally takes an argument,
sees a \par, or }, or similar tokens, we need to be able to ‘peek’ at what is coming
up next in the input stream. Depending on the category code of the token that
is seen, we need to either continue the code for the active character, or insert
the non-active version of that character in the output. The macro \peek@token
therefore takes two arguments, with which it constructs the control sequence to
expand next. It \let’s \bbl@nexta and \bbl@nextb to the two possible macros.
This is necessary for \bbl@test@token to take the right decision.

5This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion
Power Lemma” by Sonja Maus.

31



\bbl@test@token

12.418 %\def\peekQtoken#1#2{Y

12.419 % \expandafter\let\expandafter\bbl@nexta\csname #1\string#2\endcsname
12.420 % \expandafter\let\expandafter\bblOnextb

12.421 % \csname system@active\string#2\endcsname

12.422 % \futurelet\bbl@token\bblQ@test@token}

When the result of peeking at the next token has yielded a token with category
‘letter’, ‘other’ or ‘active’ it is safe to proceed with evaluating the code for the
shorthand. When a token is found with any other category code proceeding is
unsafe and therefor the original shorthand character is inserted in the output. The
macro that calls \bbl@test@token needs to setup \bbl@nexta and \bbl@nextb
in order to achieve this.

12.423 %\def\bbl@test@token{,

12.424 % \let\bblOnext\bbl@nexta

12.425 % \ifcat\noexpand\bbl@token aJ

12.426 % \else

12.427 % \ifcat\noexpand\bbl@token=j

12.428 % \else

12.429 % \ifcat\noexpand\bbl@token\noexpand\bbl@next
12.430 % \else

12.431 % \let\bbl@next\bbl@nextb

12.432 % \fi

12.433 % \fi
12.434 % \fi
12.435 % \bbl@next}

The macro \initiate@active@char takes all the necessary actions to make
its argument a shorthand character. The real work is performed once for each
character.

12.436 \def\initiate@active@char#1{Y

12.437  \expandafter\ifx\csname active@char\string##1\endcsname\relax

12.438 \bbl@afterfi{\@initiate@active@char{#1}}/,

12.439  \fi}
Note that the definition of \@initiate@active@char needs an active character,
for this the ™ is used. Some of the changes we need, do not have to become
available later on, so we do it inside a group.

12.440 \begingroup

12.441  \catcode‘\™\active

12.442 \def\x{\endgroup

12.443 \def\@initiate@active@char##1{J,
If the character is already active we provide the default expansion under this
shorthand mechanism.

12.444 \ifcat\noexpand##1\noexpand~\relax

12.445 \@ifundefined{normal@char\string##1}{%

12.446 \expandafter\let\csname normal@char\string##1\endcsname##1
12.447 \expandafter\gdef

12.448 \expandafter##1},

12.449 \expandafter{’

12.450 \expandafter\active@prefix\expandafter##17

12.451 \csname normal@char\string##1\endcsnamel}}{}/

12.452 \else

Otherwise we write a message in the transcript file,

12.453 \Qactivated{##1}/,

and define \normal@char(char) to expand to the character in its default state.
12.454 \@namedef{normal@char\string##1}{##1}),

If we are making the right quote active we need to change \pr@m@s as well.
12.455 \ifx##1°Y
12.456 \let\prim@s\bbl@prim@s

32



Also, make sure that a single > in math mode ‘does the right thing’.

12.457 \@namedef{normal@char\string##1}{%
12.458 \textormath{##1}{~\bgroup\prim@s}}/
12.459 \fi

If we are using the caret as a shorthand character special care should be taken
to make sure math still works. Therefor an extra level of expansion is introduced
with a check for math mode on the upper level.

12.460 \ifx##1~Y,

12.461 \gdef\bbl@act@caret{},

12.462 \ifmmode

12.463 \csname normal@char\string~\endcsname

12.464 \else

12.465 \bbl@afterfi

12.466 {\if@safe®@actives

12.467 \bbl@afterelse\csname normal@char\string##1\endcsname
12.468 \else

12.469 \bbl@afterfi\csname user@active\string##1\endcsname
12.470 \fi}}

12.471 \fi}

12.472 \fi

To prevent problems with the loading of other packages after babel we reset the
catcode of the character at the end of the package.

12.473 \@ifpackagewith{babel}{KeepShorthandsActive}{}{%
12.474 \edef\bbl@tempa{\catcode‘\noexpand##1\the\catcode‘##1}J,
12.475 \expandafter\AtEndOfPackage\expandafter{\bbl@tempal}}’

Now we set the lowercase code of the ~ equal to that of the character to be made
active and execute the rest of the code inside a \lowercase ‘environment’.

12.476 \@tempcnta=\lccode‘\~
12.477 \lccode‘~=“##1
12.478 \lowercase{%

Make the character active and add it to \dospecials and \@sanitize.

12.479 \catcode‘~\active
12.480 \expandafter\bbl@add@special
12.481 \csname \string##1\endcsname

Also re-activate it again at \begin{document}.

12.482 \AtBeginDocument{%

12.483 \catcode ‘##1\active
We also need to make sure that the shorthands are active during the processing
of the .aux file. Otherwise some citations may give unexpected results in the
printout when a shorthand was used in the optional argument of \bibitem for
example.

12.484 \if@filesw

12.485 \immediate\write\@mainaux{%

12.486 \string\catcode‘##1\string\activel},
12.487 \fi}%

Define the character to expand to
\active@prefix (char) \normal@char(char)

(where \active@char(char) is one control sequence!).

12.488 \expandafter\gdef

12.489 \expandafter~,

12.490 \expandafter{’

12.491 \expandafter\active@prefix\expandafter##1},
12.492 \csname normal@char\string##1\endcsnamel}}/,
12.493 \lccode‘\"\@tempcnta

12.494 \fi

33



For the active caret we first expand to \bbl@act@caret in order to be able to
handle math mode correctly.

12.495 \ifx##1-Y
12.496 \@namedef{active@char\string##1}{\bbl@act@caretl}y,
12.497 \else

We define the first level expansion of \active@char(char) to check the status of
the @safe@actives flag. If it is set to true we expand to the ‘normal’ version of
this character, otherwise we call \@active@char(char).

12.498 \@namedef{active@char\string##1}{/

12.499 \if@safe@actives

12.500 \bbl@afterelse\csname normal@char\string##1\endcsname
12.501 \else

12.502 \bbl@afterfilcsname user@active\string##1\endcsname
12.503 \fi}%

12.504 \fi

The next level of the code checks whether a user has defined a shorthand for
himself with this character. First we check for a single character shorthand. If
that doesn’t exist we check for a shorthand with an argument.

12.505 \@namedef{user@active\string##1}{/

12.506 \expandafter\ifx

12.507 \csname \user@group Osh@\string##10@\endcsname

12.508 \relax

12.509 \bbl@afterelse\bbl@sh@select\user@group##1/

12.510 {user@active@arg\string##1}{language@active\string##1}J
12.511 \else

12.512 \bbl@afterfi\csname \user@group @sh@\string##10\endcsname
12.513 \fi}%

When there is also no user-level shorthand with an argument we will check whether
there is a language defined shorthand for this active character. Before the next
token is absorbed as argument we need to make sure that this is safe. Therefor
\peek@token is called to decide that.

12.514 \long\@namedef{user@active@arg\string##1}####1{J
12.515 \expandafter\ifx

12.516 \csname \user@group Osh@\string##10\string####10\endcsname
12.517 \relax

12.518 \bbl@afterelse

12.519 \csname languageQ@active\string##1\endcsname####1/,
12.520 \else

12.521 \bbl@afterfi

12.522 \csname \user@group Q@sh@\string##10\string####10},
12.523 \endcsname

12.524 \fi}V

In order to do the right thing when a shorthand with an argument is used by itself
at the end of the line we provide a definition for the case of an empty argument.
For that case we let the shorthand character expand to its non-active self.

12.525 \@namedef{\user@group @sh@\string##100}{/
12.526 \csname normal@char\string##1\endcsnamel}

Like the shorthands that can be defined by the user, a language definition file

can also define shorthands with and without an argument, so we need two more
macros to check if they exist.

12.527 \@namedef{language@active\string##1}{%

12.528 \expandafter\ifx

12.529 \csname \language@group @sh@\string##10\endcsname

12.530 \relax

12.531 \bbl@afterelse\bbl@sh@select\languageOgroup##1y

12.532 {language@active@arg\string##1}{system@active\string##1}%
12.533 \else

12.534 \bbl@afterfi

34



12.535 \csname \language@group @sh@\string##10\endcsname

12.536 \fi}%

12.537 \long\@namedef{language@active@arg\string##1####1{),
12.538 \expandafter\ifx

12.539 \csname \language@group @sh@\string##10\string####10\endcsname
12.540 \relax

12.541 \bbl@afterelse

12.542 \csname system@active\string##1\endcsname####1/,

12.543 \else

12.544 \bbl@afterfi

12.545 \csname \language@group @sh@\string##10\string####10},
12.546 \endcsname

12.547 \fil}%

And the same goes for the system level.

12.548 \@namedef{system@active\string##1}{%
12.549 \expandafter\ifx
12.550 \csname \system@group @sh@\string##1@\endcsname
12.551 \relax
12.552 \bbl@afterelse\bbl@sh@select\system@group##1/,
12.553 {system@active@arg\string##1}{normal@char\string##1}/,
12.554 \else
12.555 \bbl@afterfi\csname \system@group @sh@\string##1@\endcsname
12.556 \fi}V
When no shorthands were found the ‘normal’ version of the active character is
inserted.
12.557 \long\@namedef{system@active@arg\string##1####1{J,
12.558 \expandafter\ifx
12.559 \csname \system@group @sh@\string##10\string####10\endcsname
12.560 \relax
12.561 \bbl@afterelse\csname normal@char\string##1\endcsname####1
12.562 \else
12.563 \bbl@afterfi
12.564 \csname \system@group @sh@\string##10@\string####10\endcsname
12.565 \fi}%

When a shorthand combination such as >’ ends up in a heading TEX would see
\protect’\protect’. To prevent this from happening a shorthand needs to be
defined at user level.

12.566 \@namedef{user@sh@\string##10\string\protect@}{%
12.567 \csname user@active\string##1\endcsname},
12.568 i

12.569 HNx

\bblesh@select This command helps the shorthand supporting macros to select how to proceed.
Note that this macro needs to be expandable as do all the shorthand macros in
order for them to work in expansion-only environments such as the argument of
\hyphenation.

This macro expects the name of a group of shorthands in its first argument
and a shorthand character in its second argument. It will expand to either
\bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.

12.570 \def\bbl@sh@select#1#2{%
12,571  \expandafter\ifx\csname#1@sh@\string#2@sel\endcsname\relax

12.572 \bbl@afterelse\bbl@scndcs

12.573  \else

12.574 \bbl@afterfi\csname#1@sh@\string#20sel\endcsname
12.575  \fi

12.576 }

35



\active@prefix The command \active@prefix which is used in the expansion of active charac-
ters has a function similar to \0T1-cmd in that it \protects the active character
whenever \protect is not \@typeset@protect.

12.577 \def\active@prefix#1{J,

12,578  \ifx\protect\@typeset@protect

12.579  \else
When \protect is set to \@unexpandable@protect we make sure that the active
character is als not expanded by inserting \noexpand in front of it. The \@gobble
is needed to remove a token such as \activechar: (when the double colon was
the active character to be dealt with).

12.580 \ifx\protect\@unexpandable@protect

12.581 \bbl@afterelse\bbl@afterfi\noexpand#1\0gobble
12.582 \else

12.583 \bbl@afterfi\bbl@afterfi\protect#1\@gobble
12.584 \fi

12.585 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an
active character on the fly. For this purpose the switch @safe@actives is avail-
able. The setting of this switch should be checked in the first level expansion of
\active@char(char).

12.586 \newif\if@safe@actives
12.587 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this
must be undone in the headers to prevent unexpected typeset results. For this
situation we define a command to make them “unsafe” again.

12.588 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbleactivate This macro takes one argument, like \initiate@active@char. The macro is used
to change the definition of an active character to expand to \active@char(char)
instead of \normal@char(char).

12.589 \def\bbl@activate#1{},
12.590 \expandafter\def
12.591  \expandafter#1\expandafter{),

12.592 \expandafter\active@prefix
12.593 \expandafter#l\csname active@char\string#1\endcsnamel}y,
12.594 }

\bbl@deactivate This macro takes one argument, like \bbl@activate. The macro doesn’t
really make a character non-active; it changes its definition to expand to
\normal@char(char).

12.595 \def\bbl@deactivate#1{}
12.596  \expandafter\def
12.597 \expandafter#1\expandafter{/,

12.598 \expandafter\active@prefix
12.599 \expandafter#l\csname normal@char\string#1\endcsname}y,
12.600 }

\bblefirstcs These macros have two arguments. They use one of their arguments to build a
\bbl@scndcs control sequence from.

12.601 \def\bbl@firstcs#1#2{\csname#1\endcsname}
12.602 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain
level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

36



3. the code to be executed when the shorthand is encountered.

12.603 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}

12.604 \def\@decl@short#1#2#3\0nil#4{J,

12.605 \def\bbl@tempa{#3}/

12.606  \ifx\bbl@tempa\Gempty

12.607 \expandafter\let\csname #10@sh@\string#2@sel\endcsname\bbl@scndcs
12.608 \@namedef {#10sh@\string#20}{#4}

12.609 \else

12.610 \expandafter\let\csname #1Q@sh@\string#2@sel\endcsname\bblOfirstcs
12.611 \@namedef{#1@sh@\string#20@\string#3e}{#4}%

12.612  \fi}

\textormath Some of the shorthands that will be declared by the language definition files
have to be usable in both text and mathmode. To achieve this the helper macro
\textormath is provided.

12.613 \def\textormath#1#2{%
12.614  \ifmmode

12.615 \bbl@afterelse#2/
12.616 \else

12.617 \bbl@afterfi#1,
12.618 \fi}

\user@group The current concept of ‘shorthands’ supports three levels or groups of shorthands.
\language@group FIor each level the name of the level or group is stored in a macro. The default is
\system@group 0 have a user group; use language group ‘english’ and have a system group called
‘system’.
12.619 \def\user@group{user}
12.620 \def\language@group{english}
12.621 \def\system@group{system}

\useshorthands This is the user level command to tell M TEX that user level shorthands will be used
in the document. It takes one argument, the character that starts a shorthand.

12.622 \def\useshorthands#1{%
First note that this is user level.
12.623  \def\user@group{user}y
Then initialize the character for use as a shorthand character.
12.624 \initiate@active@char{#1}/,
Now that TEX has seen the character its category code is fixed, but for the actions

of \bbl@activate to succeed we need it to be active. Hence the trick with the
\lccode to circumvent this.

12.625 \@tempcntallccode‘\~

12.626  \lccode‘~=‘#17,

12.627 \lowercase{\catcode‘~\active\bbl@activate{~}}%
12.628 \lccode‘\~\@tempcnta}

\defineshorthand Currently we only support one group of user level shorthands, called ‘user’.
12.629 \def\defineshorthand{\declare@shorthand{user}}

\languageshorthands A user level command to change the language from which shorthands are used.
12.630 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand
12.631 \def\aliasshorthand#1#2{J,
First the new shorthand needs to be initialized,

12.632 \expandafter\ifx\csname active@char\string#2\endcsname\relax

12.633 \ifx\document\@notprerr

12.634 \@notshorthand{#2}

12.635 \else

12.636 \initiate@active@char{#2}/,

37



Then we need to use the \lccode trick to make the new shorthand behave like
the old one. Therefore we save the current \lccode of the ~-character and restore
it later. Then we \let the new shorthand character be equal to the original.

12.637 \@tempcntallccode‘\~
12.638 \lccode‘~=‘#2Y
12.639 \lowercase{\let~#1}}
12.640 \lccode‘\~\@tempcnta
12.641 \fi
12.642 \fi
12.643 }
\@notshorthand
12.644 \def\@notshorthand#1{/,
12.645 \PackageError{babell}{},
12.646 The character ‘\string #1’ should be made
12.647 a shorthand character;\MessageBreak
12.648 add the command \string\useshorthands\string{#1\string} to
12.649 the preamble.\MessageBreak
12.650 I will ignore your instruction}{}%
12.651  }

\shorthandon The first level definition of these macros just passes the argument on to
\shorthandoff \bbl@switch@sh, adding \@nil at the end to denote the end of the list of char-
acters.

12.652 \newcommand*\shorthandon[1]{\bbl@switch@sh{on}#1\@nil}
12.653 \newcommand*\shorthandoff [1]{\bbl@switch@sh{off}#1\@nil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to
the first argument of \bbl@switch@sh.

12.654 \def\bbl@switch@sh#1#2#3\enil{%
But before any of this switching takes place we make sure that the character we
are dealing with is known as a shorthand character. If it is, a macro such as
\active@char" should exist.

12.655 \@ifundefined{active@char\string#2}{J

12.656 \PackageError{babell}{/,

12.657 The character ’\string #2’ is not a shorthand character
12.658 in \languagenamel}{J

12.659 Maybe you made a typing mistake?\MessageBreak

12.660 I will ignore your instruction}}{’

12.661 \csname bbl@switch@sh@#1\endcsname#2},

Now that, as the first character in the list has been taken care of, we pass the rest
of the list back to \bbl@switch@sh.

12.662  \ifx#3\Qempty\else

12.663 \bbl@afterfi\bbl@switch@sh{#1}#3\@nil

12.664 \fi}

\bbl@switch@sh@off All that is left to do is define the actual switching macros. Switching off is easy,
we just set the category code to ‘other’ (12).

12.665 \def\bbl@switch@sh@off#1{\catcode‘#112\relax}

\bbl@switch@sh@n But switching the shorthand character back on is a bit more tricky. It involves
making sure that we have an active character to begin with when the macro is
being defined. It also needs the use of \lowercase and \lccode trickery to get
everything to work out as expected. And to keep things local that need to remain
local a group is opened, which is closed as soon as \x gets executed.

12.666 \begingroup
12.667 \catcode‘\™\active
12.668 \def\x{\endgroup

38



\bbl@prim@s
\bbl@premes

12.669 \def\bbl@switch@sh@on##1{}

12.670 \begingroup

12.671 \lccode‘~=“##1
12.672 \lowercase{\endgroup
12.673 \catcode‘~\active
12.674 jyA

12.675 1A

12.676 }

The next operation makes the above definition effective.

12.677 \x
12.678 %

To prevent problems with constructs such as \char"01A when the double quote
is made active, we define a shorthand on system level.

12.679 \declare@shorthand{system}{"}{\csname normal@char\string"\endcsname}

When the right quote is made active we need to take care of handling it cor-
rectly in mathmode. Therefore we define a shorthand at system level to make it
expand to a non-active right quote in textmode, but expand to its original defini-
tion in mathmode. (Note that the right quote is ‘active’ in mathmode because of
its mathcode.)

12.680 \declare@shorthand{system}{’}{/
12.681 \textormath{\csname normal@char\string’\endcsnamel},
12.682 {\sp\bgroup\prim@s}}

When the left quote is made active we need to take care of handling it correctly
when it is followed by for instance an open brace token. Therefore we define a
shorthand at system level to make it expand to a non-active left quote.

12.683 \declare@shorthand{system}{‘}{\csname normal@char\string‘\endcsname}

One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted
to look for an active right quote.

12.684 \def\bbl@prim@s{y

12.685  \prime\futurelet\@letQ@token\bblOprOm@s}

12.686 \begingroup

12.687 \catcode‘\’\active\let’\relax

12.688  \def\x{\endgroup

12.689 \def\bbl@premes{’

12.690 \ifx’\@let@token
12.691 \expandafter\pro@s
12.692 \else

12.693 \ifx~\@let@token
12.694 \expandafter\expandafter\expandafter\preQot
12.695 \else

12.696 \egroup

12.697 \fi

12.698 \fi}},

12.699 }

12.700 \x

12.701 {/core | shorthands)

Normally the ~ is active and expands to \penalty\@M\_. When it is written
to the .aux file it is written expanded. To prevent that and to be able to use
the character ~ as a start character for a shorthand, it is redefined here as a one
character shorthand on system level.

12.702 (xcore)

12.703 \initiate@active@char{~}

12.704 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }
12.705 \bbl@activate{™}

39



\0T1dgpos The position of the double quote character is different for the OT1 and T1 encod-
\T1dgpos ings. It will later be selected using the \f@encoding macro. Therefor we define
two macros here to store the position of the character in these encodings.
12.706 \expandafter\def\csname 0Tldgpos\endcsname{127}
12.707 \expandafter\def\csname Tldgpos\endcsname{4}
When the macro \f@encoding is undefined (as it is in plain TEX) we define it here
to expand to 0T1

12.708 \ifx\f@encoding\Qundefined
12.709  \def\f@encoding{0T1}
12.710 \fi

12.5 Language attributes

Language attributes provide a means to give the user control over which features
of the language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute.

12.711 \newcommand\languageattribute [2]{%
First check whether the language is known.

12.712 \expandafter\ifx\csname 1@#1\endcsname\relax

12.713 \@nolanerr{#1}/

12.714 \else
Than process each attribute in the list.

12.715 \@for\bbleattr:=#2\do{%
We want to make sure that each attribute is selected only once; therefor we store
the already selected attributes in \bbl@known®@attribs. When that control se-
quence is not yet defined this attribute is certainly not selected before.

12.716 \ifx\bbl@known@attribs\@undefined
12.717 \in@false
12.718 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

12.719 \edef\bbl@tempa{\noexpand\in@{,#1-\bbl@attr,}%
12.720 {,\bbl@known@attribs,}}V
12.721 \bbl@tempa
12.722 \fi
When the attribute was in the list we issue a warning; this might not be the users
intention.
12.723 \ifin®@
12.724 \PackageWarning{Babell}{/,
12.725 You have more than once selected the attribute
12.726 ’\bbl@attr’\MessageBreak for language #11}J,
12.727 \else

When we end up here the attribute is not selected before. So, we add it to the list
of selected attributes and execute the associated TEX-code.

12.728 \edef\bbl@tempa{’

12.729 \noexpand\bblO@add@list\noexpand\bbl@known@attribs{#1-\bbl@attrl}}/
12.730 \bbl@tempa

12.731 \edef\bbl@tempa{#1-\bbl@attr}y

12.732 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes,
12.733 {\csname#1@attr@\bbl@attr\endcsnamel}y,

12.734 {\@attrerr{#1}{\bbl@attr}}/,

12.735 \fi

12.736 }

12.737  \fi}

This command should only be used in the preamble of a document.
12.738 \@onlypreamble\languageattribute

40



\bbl@declare@ttribute

\bbl@ifattributeset

\bbl@add@list

\bbl@ifknown@ttrib

The error text to be issued when an unknown attribute is selected.
12.739  \newcommand*{\@attrerr}[2]{%

12.740 \PackageError{babell}/,
12.741 {The attribute #2 is unknown for language #1.}),
12.742 {Your command will be ignored, type <return> to proceed}}

This command adds the new language/attribute combination to the list of known

attributes.

12.743 \def\bbl@declare@ttribute#1#2#3{Y%
12.744 \bbl@add@list\bbl@attributes{#1-#21}}

Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras. .. for the current
language is extended, otherwise the attribute will not work as its code is removed

from memory at \begin{document}.

12.745 \expandafter\def\csname#1Q@attr@#2\endcsname{#3}/,
12.746  }

This internal macro has 4 arguments. It can be used to interpret TEX code based
on whether a certain attribute was set. This command should appear inside the
argument to \AtBeginDocument because the attributes are set in the document

preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being

checked, and the third and fourth arguments are the true and false clauses.
12.747 \def\bbl@ifattributeset#1#2#3#4{),
First we need to find out if any attributes were set; if not we’re done.

12.748  \ifx\bbl@known@attribs\@undefined
12.749 \in@false
12.750  \else

The we need to check the list of known attributes.

12.751 \edef\bbl@tempa{\noexpand\in@{, #1-#2,}/,
12.752 {,\bbl@knownQattribs,}}%

12.753 \bbl@tempa

12.754  \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was

set or not. Just to be safe the code to be executed is ‘thrown over the \fi’.
12.755 \ifin@

12.756 \bblQafterelse#3,
12.757  \else
12.758 \bbl@afterfi#4,
12.759  \fi
12.760  }
This internal macro adds its second argument to a comma separated list in its

first argument. When the list is not defined yet (or empty), it will be initiated

12.761 \def\bbl@add@list#1#2{}
12.762  \ifx#1\Qundefined
12.763 \def#1{#2}%

12.764 \else

12.765 \ifx#1\@empty
12.766 \def#1{#2}/
12.767 \else
12.768 \edef#1{#1,#2}%
12.769 \fi
12770 \fi
12771}
An internal macro to check whether a given language/attribute is known. The

macro takes 4 arguments, the language/attribute, the attribute list, the TEX-code

41



\bbl@clear@ttribs

\babel@savecnt

\babel@beginsave

\babel@save

to be executed when the attribute is known and the TgEX-code to be executed
otherwise.

12.772 \def\bbl@ifknown@ttrib#1#2{}

We first assume the attribute is unknown.
12.773  \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.
12.774 \@for\bbl@tempb:=#2\do{%

12.775 \expandafter\in@\expandafter{\expandafter,\bbl@tempb, }{,#1,}%
12.776 \ifin@
When a match is found the definition of \bbl@tempa is changed.
12.777 \let\bbl@tempa\@firstoftwo
12.778 \else
12.779 \£i}%

Finally we execute \bbl@tempa.

12.780  \bbl@tempa
12.781 }

This macro removes all the attribute code from ETEX’s memory at \begin{document}

time (if any is present).

12.782 \def\bbl@clear@ttribs{
12.783  \ifx\bbl@attributes\@undefined\else

12.784 \@for\bbl@tempa:=\bbl@attributes\do{%
12.785 \expandafter\bbl@clear@ttrib\bbl@tempa.
12.786 Yo

12.787 \let\bbl@attributes\@undefined

12.788  \fi

12.789 }

12.790 \def\bbl@clear@ttrib#1-#2.{%
12.791 \expandafter\let\csname#1Qattr@#2\endcsname\Qundefined}
12.792 \AtBeginDocument{\bbl@clear@ttribs}

12.6 Support for saving macro definitions

To save the meaning of control sequences using \babel®@save, we use temporary
control sequences. To save hash table entries for these control sequences, we don’t
use the name of the control sequence to be saved to construct the temporary
name. Instead we simply use the value of a counter, which is reset to zero each
time we begin to save new values. This works well because we release the saved
meanings before we begin to save a new set of control sequence meanings (see
\selectlanguage and \originalTeX).

The initialization of a new save cycle: reset the counter to zero.
12.793 \def\babel@beginsave{\babel@savecnt\z@}
Before it’s forgotten, allocate the counter and initialize all.

12.794 \newcount\babel@savecnt
12.795 \babel@beginsave

The macro \babel@save(csname) saves the current meaning of the control se-
quence {csname) to \originalTeX’. To do this, we let the current meaning to a
temporary control sequence, the restore commands are appended to \originalTeX
and the counter is incremented.

12.796 \def\babel@save#1{}

12.797 \expandafter\let\csname babel@\number\babel@savecnt\endcsname #1\relax

12.798  \begingroup

12.799 \toks@\expandafter{\originalTeX \let#1=}J,

12.800 \edef\x{\endgroup

6\originalTeX has to be expandable, i.e. you shouldn’t let it to \relax.

42



\babel@savevariable

\bbl@frenchspacing
\bbl@nonfrenchspacing

\addto

\allowhyphens

12.801 \def\noexpand\originalTeX{\the\toks@ \expandafter\noexpand
12.802 \csname babel@\number\babel@savecnt\endcsname\relax}}’
12.803 \x

12.804 \advance\babel@savecnt\@ne}

The macro \babel@savevariable(variable) saves the value of the variable.
(variable) can be anything allowed after the \the primitive.

12.805 \def\babel@savevariable#1{\begingroup

12.806 \toks@\expandafter{\originalTeX #1=}}
12.807 \edef\x{\endgroup
12.808 \def\noexpand\originalTeX{\the\toks@ \the#1l\relaxl}}/,
12.809  \x}
Some languages need to have \frenchspacing in effect. Others don’t want that.

The command \bbl@frenchspacing switches it on when it isn’t already in effect
and \bbl@nonfrenchspacing switches it off if necessary.

12.810 \def\bbl@frenchspacing{’
12.811  \ifnum\the\sfcode‘\.=\0@m

12.812 \let\bbl@nonfrenchspacing\relax

12.813 \else

12.814 \frenchspacing

12.815 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.816  \fi}
12.817 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.7 Support for extending macros

For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once
they have been defined the macro \addto is introduced. It takes two arguments,
a {control sequence) and TEX-code to be added to the (control sequence).
If the (control sequence) has not been defined before it is defined now.

12.818 \def\addto#1#2{}

12.819  \ifx#1\@undefined

12.820 \def#1{#2}/,

12.821 \else
The control sequence could also expand to \relax, in which case a circular defi-
nition results. The net result is a stack overflow.

12.822 \ifx#1\relax
12.823 \def#1{#2}%
12.824 \else

Otherwise the replacement text for the (control sequence) is expanded and stored
in a token register, together with the TEX-code to be added. Finally the (control
sequence) is redefined, using the contents of the token register.

12.825 {\toks@\expandafter{#1#2}J,
12.826 \xdef#1{\the\toks@}1}Y
12.827 \fi

12.828  \fi

12.829 }

12.8 Macros common to a number of languages

This macro makes hyphenation possible. Basically its definition is nothing more
than \nobreak \hskip Opt plus Opt’.

12.830 \def\bbl@t@one{T1}

12.831 \def\allowhyphens{/,

12.832  \ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

12.833 \def\bbl@allowhyphens{\nobreak\hskip\z@skip}

"TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak
at this glue node.

43



\set@low@box The following macro is used to lower quotes to the same level as the comma. It
prepares its argument in box register 0.
12.834 \def\set@low@box#1{\setbox\tw@\hbox{, }\setbox\z@\hbox{#1}%

12.835 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@}
12.836 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.
12.837 \def\save@sf@q #1{\leavevmode
12.838 \begingroup
12.839  \edef\@SF{\spacefactor \the\spacefactor}#1\@SF
12.840 \endgroup
12.841 }

\bbledisc For some languages the macro \bbl@disc is used to ease the insertion of discre-
tionaries for letters that behave ‘abnormally’ at a breakpoint.

12.842 \def\bbledisc#1#2{}
12.843 \nobreak\discretionary{#2-}{}{#1}\allowhyphens}

12.9 Making glyphs available

The file babel.dtx® makes a number of glyphs available that either do not exist
in the 0T1 encoding and have to be ‘faked’, or that are not accessible through
Tlenc.def.

12.10 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a
separate character, accessible via \quotedblbase. In the 0T1 encoding it is not
available, therefor we make it available by lowering the normal open quote char-
acter to the baseline.

12.844 \ProvideTextCommand{\quotedblbase}{0T1}{%

12.845 \save@sf@q{\set@low@box{\textquotedblright\/}%

12.846 \box\z@\kern-.04em\allowhyphens}}
Make sure that when an encoding other than 0T1 or T1 is used this glyph can still
be typeset.

12.847 \ProvideTextCommandDefault{\quotedblbase}{%
12.848  \UseTextSymbol{0T1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

12.849 \ProvideTextCommand{\quotesinglbase}{0T1}{%

12.850 \save@sf@q{\set@low@box{\textquoteright\/}/

12.851 \box\z@\kern-.04em\allowhyphens}}
Make sure that when an encoding other than 0T1 or T1 is used this glyph can still
be typeset.

12.852 \ProvideTextCommandDefault{\quotesinglbase}{%
12.853  \UseTextSymbol{0T1}{\quotesinglbasel}}

\guillemotleft The guillemet characters are not available in 0T1 encoding. They are faked.

\guillemotright12.854 \ProvideTextCommand{\guillemotleft}{0T1}{%
12.855  \ifmmode

12.856 \11

12.857 \else

12.858 \save@sf@q{\nobreak

12.859 \raise.2ex\hbox{$\scriptscriptstyle\11l$}\allowhyphens}’,

12.860 \fi}
12.861 \ProvideTextCommand{\guillemotright}{0T1}{%

8The file described in this section has version number v3.8j, and was last revised on
2008/03/16

44



12.862 \ifmmode

12.863 \gg

12.864 \else

12.865 \save@sf@q{\nobreak

12.866 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\allowhyphensl}y,

12.867 \fi}
Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.868 \ProvideTextCommandDefault{\guillemotleft}{/

12.869  \UseTextSymbol{0T1}{\guillemotleft}}

12.870 \ProvideTextCommandDefault{\guillemotright}{’
12.871  \UseTextSymbol{0T1}{\guillemotright}}

\guilsinglleft The single guillemets are not available in 0T1 encoding. They are faked.

\guilsinglright12.872 \ProvideTextCommand{\guilsinglleft}{0T1}{%
12.873  \ifmmode

12.874 <%

12.875  \else

12.876 \save@sf@q{\nobreak

12.877 \raise.2ex\hbox{$\scriptscriptstyle<$}\allowhyphens}’

12.878  \fi}
12.879 \ProvideTextCommand{\guilsinglright}{0T1}{%
12.880  \ifmmode

12.881 >%

12.882 \else

12.883 \save@sf@q{\nobreak

12.884 \raise.2ex\hbox{$\scriptscriptstyle>$}\allowhyphensl}y

12.885 \fi}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.886 \ProvideTextCommandDefault{\guilsinglleft}{%

12.887 \UseTextSymbol{0T1}{\guilsinglleft}}

12.888 \ProvideTextCommandDefault{\guilsinglright}{/,

12.889  \UseTextSymbol{0T1}{\guilsinglright}}

12.11 Letters

\ij The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not
\1J in the OT1 encoded fonts. Therefor we fake it for the 0T1 encoding.

12.890 \DeclareTextCommand{\ij}{0T1}{%

12.891 \allowhyphens i\kern-0.02em j\allowhyphens}

12.892 \DeclareTextCommand{\IJ}{0T1}{%

12.893 \allowhyphens I\kern-0.02em J\allowhyphens}

12.894 \DeclareTextCommand{\ij}{T1}{\char188}

12.895 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.896 \ProvideTextCommandDefault{\ij}{%

12.897 \UseTextSymbol{OT1}{\ij}}

12.898 \ProvideTextCommandDefault{\IJ}{%

12.899  \UseTextSymbol{0T1}{\IJ}}

\dj The croatian language needs the letters \dj and \DJ; they are available in the T1
\pJ encoding, but not in the 0T1 encoding by default.
Some code to construct these glyphs for the 0T1 encoding was made available
to me by Stipcevic Mario, (stipcevic@olimp.irb.hr).
12.900 \def\crrtic@{\hrule height0.lex widthO.3em}
12.901 \def\crttic@{\hrule heightO.lex widthO.33em}
12.902 %

45



12.903 \def\ddje{%

12.904 \setboxO0\hbox{d}\dimen@=\htO

12.905 \advance\dimen@lex

12.906  \dimen@.45\dimen@

12.907 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen®

12.908 \advance\dimen@ii.5ex

12.909 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
12.910 \def\DDJ@{Y

12.911  \setbox0\hbox{D}\dimen@=.55\ht0

12.912 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen®

12.913 \advance\dimen@ii.1bex Y% correction for the dash position
12.914 \advance\dimen®@ii-.15\fontdimen7\font % correction for cmtt font
12.915 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen®

12.916  \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
12.917 %

12.918 \DeclareTextCommand{\dj}{0T1}{\ddje@ d}

12.919 \DeclareTextCommand{\DJ}{0T1}{\DDJ@ D}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.920 \ProvideTextCommandDefault{\dj}{%

12.921  \UseTextSymbol{0T1}{\dj}}

12.922 \ProvideTextCommandDefault{\DJ}{%

12.923  \UseTextSymbol{0T1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but
for other encodings it is not available. Therefor we make it available here.

12.924 \DeclareTextCommand{\SS}{0T1}{SS}
12.925 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{0T1}{\SS}}

12.12 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make
them usable both outside and inside mathmode.

\glg The ‘german’ single quotes.

\grq12.926 \ProvideTextCommand{\glq}{0T1}{%
12.927 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
12.928 \ProvideTextCommand{\glq}{T1}{%
12.929  \textormath{\quotesinglbase}{\mbox{\quotesinglbasel}}}
12.930 \ProvideTextCommandDefault{\glq}{\UseTextSymbol{0T1}\glq}

The definition of \grq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.931 \ProvideTextCommand{\grq}{T1}{%

12.932  \textormath{\textquoteleft}{\mbox{\textquoteleft}}}
12.933 \ProvideTextCommand{\grq}{0T1}{%

12.934 \save@sf@q{\kern-.0125emj,

12.935 \textormath{\textquoteleft}{\mbox{\textquoteleft}}/,
12.936  \kern.O7em\relax}}

12.937 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{0T1}\grq}

\glqg The ‘german’ double quotes.

\grqq12.938 \ProvideTextCommand{\glqq}{0T1}{/
12.939  \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
12.940 \ProvideTextCommand{\glqg}{T1}{%
12.941  \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
12.942 \ProvideTextCommandDefault{\glqq}{\UseTextSymbol{0T1}\glqq}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.943 \ProvideTextCommand{\grqq}{T1}{%
12.944 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

46



12.945 \ProvideTextCommand{\grqq}{0T1}{%

12.946  \save@sf@q{\kern-.07emj,

12.947 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}1}},
12.948 \kern.O7em\relax}}

12.949 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{0T1}\grqq}

\flg The ‘french’ single guillemets.

\frq12.950 \ProvideTextCommand{\f1q}{0T1}{%
12.951 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.952 \ProvideTextCommand{\f1q}{T1}{%
12.953  \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.954 \ProvideTextCommandDefault{\f1q}{\UseTextSymbol{0T1}\f1lq}

12.955 \ProvideTextCommand{\frq}{0T1}{/

12.956  \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.957 \ProvideTextCommand{\frq}{T1}{%

12.958 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.959 \ProvideTextCommandDefault{\frq}{\UseTextSymbol{0T1}\frq}

\flqg The ‘french’ double guillemets.
\frqgq12.960 \ProvideTextCommand{\f1qq}{0T1}{%
12.961  \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.962 \ProvideTextCommand{\f1qq}{T1}{%
12.963 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.964 \ProvideTextCommandDefault{\flqq}{\UseTextSymbol{0T1}\flqq}

12.965 \ProvideTextCommand{\frqq}{0T1}{%

12.966  \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.967 \ProvideTextCommand{\frqq}{T1}{%

12.968  \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.969 \ProvideTextCommandDefault{\frqq}{\UseTextSymbol{0T1}\frqq}

12.13 Umlauts and trema’s

The command \" needs to have a different effect for different languages. For
German for instance, the ‘umlaut’ should be positioned lower than the default
position for placing it over the letters a, o, u, A, O and U. When placed over an
e, i, E or I it can retain its normal position. For Dutch the same glyph is always
placed in the lower position.

\umlauthigh To be able to provide both positions of \" we provide two commands to switch
\umlautlow the positioning, the default will be \umlauthigh (the normal positioning).

12.970 \def\umlauthigh{’

12.971  \def\bbl@umlauta##1{\leavevmode\bgroup’

12.972 \expandafter\accent\csname\f@encoding dgpos\endcsname

12.973 ##1\allowhyphens\egroup}’

12.974  \let\bbl@umlaute\bbl@umlauta}

12.975 \def\umlautlow{’

12.976  \def\bblQumlauta{\protect\lowerQumlautl}}

12.977 \def\umlautelow{%

12.978  \def\bbl@umlaute{\protect\lower@umlautl}}

12.979 \umlauthigh

\lower@umlaut The command \lower@umlaut is used to position the \" closer the the letter.
We want the umlaut character lowered, nearer to the letter. To do this we

need an extra (dimen) register.

12.980 \expandafter\ifx\csname U@D\endcsname\relax

12.981 \csname newdimen\endcsname\U@D

12.982 \fi
The following code fools TEX’s make_accent procedure about the current x-height
of the font to force another placement of the umlaut character.

12.983 \def\lower@umlaut#1{%

47



First we have to save the current x-height of the font, because we’ll change this
font dimension and this is always done globally.

12.984 \leavevmode\bgroup

12.985 \U@D 1ex%
Then we compute the new x-height in such a way that the umlaut character is
lowered to the base character. The value of .45ex depends on the METAFONT
parameters with which the fonts were built. (Just try out, which value will look

best.)
12.986 {\setbox\z@\hbox{/,
12.987 \expandafter\char\csname\f@encoding dgpos\endcsname}%
12.988 \dimen@ -.45ex\advance\dimen@\ht\zQ

If the new x-height is too low, it is not changed.
12.989 \ifdim lex<\dimen@ \fontdimen5\font\dimen@ \fil}},

Finally we call the \accent primitive, reset the old x-height and insert the base
character in the argument.

12.990 \expandafter\accent\csname\f@encoding dgqpos\endcsname

12.991 \fontdimen5\font\UGD #17%

12.992  \egroup}

For all vowels we declare \" to be a composite command which uses
\bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to
be sure that these definitions override the ones that are provided when the pack-
age fontenc with option OT1 is used. Therefor these declarations are postponed
until the beginning of the document.

12.993 \AtBeginDocument{’,

12.994 \DeclareTextCompositeCommand{\"}{0T1}{a}{\bbl@umlauta{al}}y,
12.995 \DeclareTextCompositeCommand{\"}{0T1}{e}{\bbl@umlaute{e}}%
12.996  \DeclareTextCompositeCommand{\"}{0T1}{i}{\bbl@umlaute{\i}}%
12.997  \DeclareTextCompositeCommand{\"}{O0T1}{\i}{\bblQumlaute{\i}}/,
12.998  \DeclareTextCompositeCommand{\"}{0T1}{o}{\bbl@umlauta{o}}%
12.999  \DeclareTextCompositeCommand{\"}{0T1}{u}{\bbl@umlauta{u}}’
12.1000 \DeclareTextCompositeCommand{\"}{0T1}{A}{\bbl@umlauta{A}}/
12.1001  \DeclareTextCompositeCommand{\"}{0T1}{E}{\bbl@umlaute{E}}/
12.1002  \DeclareTextCompositeCommand{\"}{0T1}{I}{\bblOumlaute{I}}%
12.1003  \DeclareTextCompositeCommand{\"}{0T1}{0}{\bbl@umlauta{0}}%
12.1004 \DeclareTextCompositeCommand{\"}{0T1}{U}{\bbl@umlauta{U}}
12.1005 }

12.14 The redefinition of the style commands

The rest of the code in this file can only be processed by TEX, so we check the
current format. If it is plain TEX, processing should stop here. But, because of the
need to limit the scope of the definition of \format, a macro that is used locally in
the following \if statement, this comparison is done inside a group. To prevent
TEX from complaining about an unclosed group, the processing of the command
\endinput is deferred until after the group is closed. This is accomplished by the
command \aftergroup.

12.1006 {\def\format{lplain}

12.1007 \ifx\fmtname\format

12.1008 \else

12.1009 \def\format{LaTeX2e}

12.1010  \ifx\fmtname\format

12.1011  \else

12.1012 \aftergroup\endinput

12.1013  \fi

12.1014 \fi}

Now that we’re sure that the code is seen by KTEX only, we have to find out
what the main (primary) document style is because we want to redefine some

48



macros. This is only necessary for releases of I TEX dated before December 1991.
Therefor this part of the code can optionally be included in babel.def by speci-
fying the docstrip option names.
12.1015 (*xnames)
The standard styles can be distinguished by checking whether some macros are
defined. In table 1 an overview is given of the macros that can be used for this

purpose.
article :  both the \chapter and \opening macros are unde-
fined
report and book : the \chapter macro is defined and the \opening is
undefined
letter :  the \chapter macro is undefined and the \opening
is defined

Table 1: How to determine the main document style

The macros that have to be redefined for the report and book document styles
happen to be the same, so there is no need to distinguish between those two styles.

\doc@style First a parameter \doc@style is defined to identify the current document style.
This parameter might have been defined by a document style that already uses
macros instead of hard-wired texts, such as artikell.sty [6], so the existence of
\doc@style is checked. If this macro is undefined, i.e., if the document style is
unknown and could therefore contain hard-wired texts, \doc@style is defined to
the default value ‘0’.

12.1016 \ifx\@undefined\doc@style
12.1017  \def\doc@style{0}/

This parameter is defined in the following if construction (see table 1):

12.1018  \ifx\@undefined\opening

12.1019 \ifx\@undefined\chapter
12.1020 \def\doc@style{1}}
12.1021 \else

12.1022 \def\doc@style{2}%
12.1023 \fi

12.1024  \else

12.1025 \def\doc@style{3}%

12.1026  \fiJ%
12.1027 \fi}

12.14.1 Redefinition of macros

Now here comes the real work: we start to redefine things and replace hard-wired
texts by macros. These redefinitions should be carried out conditionally, in case
it has already been done.
For the figure and table environments we have in all styles:
12.1028 \@ifundefined{figurename}{\def\fnumefigure{\figurename{} \thefigure}}{}
12.1029 \@ifundefined{tablename}{\def\fnum@table{\tablename{} \thetable}}{}
The rest of the macros have to be treated differently for each style. When
\doc@style still has its default value nothing needs to be done.
12.1030 \ifcase \doc@style\relax
12.1031 \or
This means that babel .def is read after the article style, where no \chapter
and \opening commands are defined”.

9A fact that was pointed out to me by Nico Poppelier and was already used in Piet van
Oostrum’s document style option nl.

49



12

12

12
12
12
12
12
12

12

12.
12.
12.
12.
12.

12.
12.
12.

12

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.
12.
12.
12.

12

12

12.
12.
12.
12.
12.
12.
12.

First we have the \tableofcontents, \listoffigures and \listoftables:
1032 \@ifundefined{contentsnamel},

.1033 {\def\tableofcontents{\section*{\contentsname\@mkboth

1034 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}7

1035 \@starttoc{toc}}}H{}

1036

1037 \@ifundefined{listfigurenamel}),

1038 {\def\listoffigures{\section*{\listfigurename\@ukboth

1039 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}J,
.1040 \@starttoc{lof}}}{}

1041

1042 \@ifundefined{listtablename}y,

1043 {\def\listoftables{\section*{\listtablename\@ukboth

1044 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}/,

1045 \@starttoc{lot}}}{}

Then the \thebibliography and \theindex environments.

1046 \@ifundefined{refnamel}},

1047 {\def\thebibliography#1{\section*{\refname

1048 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}}7
.1049 \list{[\arabic{enumi}]}{\settowidth\labelwidth{ [#1]}}
1050 \leftmargin\labelwidth

1051 \advance\leftmargin\labelsep

1052 \usecounter{enumi}}/,

1053 \def\newblock{\hskip.1lem plus.33em minus.07em}},

1054 \sloppy\clubpenalty4000\widowpenalty\clubpenalty

1055 \sfcode‘\.=1000\relax}}{}

1056
1057 \@ifundefined{indexname}/,

1058 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
1059 \columnseprule \z@
1060 \columnsep 35pt\twocolumn[\section*{\indexname}]7,
1061 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}7/,
1062 \thispagestyle{plain}/,
.1063 \parskip\z@ plus.3pt\parindent\z@\let\item\@idxitem}}{}

The abstract environment:

1064 \@ifundefined{abstractname}};

1065 {\def\abstract{\if@twocolumn

1066 \section*{\abstractname})

1067 \else \small

.1068 \begin{center}y

1069 {\bf \abstractname\vspace{-.5em}\vspace{\z@}}}
1070 \end{centerl}),

1071 \quotation

1072 \fi}}{}

And last but not least, the macro \part:

.1073 \@ifundefined{partname}};
12.
12.
12.
12.
12.
12.

1074 {\def\@part [#1]#2{\ifnum \c@secnumdepth >\m@ne

1075 \refstepcounter{part}y,

1076 \addcontentsline{toc}{part}{\thepart
1077 \hspace{lem}#1}\else

1078 \addcontentsline{toc}{part}{#1}\fi
1079 {\parindent\z@ \raggedright

.1080 \ifnum \c@secnumdepth >\m@ne

1081 \Large \bf \partname{} \thepart
1082 \par \nobreak

1083 \fi

1084 \huge \bf

1085 #2\markboth{}{}\par})

1086 \nobreak

1087 \vskip 3ex\@afterheading}/,

50



12.

12.

12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.

12

12.
12.
12.
12.

12

12.

12

12.
12.
12.
12.

12

12.

12

12

12

12.
12.
12.
12.
12.
12.

12

12.
12.
12.
12.

12.
1134 {\def\abstract{\titlepage
12.

12

1088 }{}
This is all that needs to be done for the article style.
1089 \or

The next case is formed by the two styles book and report. Basically we have
to do the same as for the article style, except now we must also change the
\chapter command.

The tables of contents, figures and tables:

1090 \@ifundefined{contentsname}};

1091 {\def\tableofcontents{\@restonecolfalse

1092 \if@twocolumn\@restonecoltrue\onecolumn

1093 \fi\chapter*{\contentsname\@nkboth

.1094 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}7,
1095 \@starttoc{toc})

1096 \csname if@restonecol\endcsname\twocolumn

1097 \csname fi\endcsname}}{}

1098

.1099 \@ifundefined{listfigurename}y

1100 {\def\listoffigures{\@restonecolfalse

1101 \if@twocolumn\@restonecoltrue\onecolumn

1102 \fi\chapter*{\listfigurename\@ukboth

1103 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}/
1104 \@starttoc{lof})

1105 \csname if@restonecol\endcsname\twocolumn

.1106 \csname fi\endcsname}}{}

1107

.1108 \@ifundefined{listtablename}},

1109 {\def\listoftables{\@restonecolfalse

1110 \if@twocolumn\@restonecoltrue\onecolumn

1111 \fi\chapter*{\listtablename\@mkboth

1112 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}/,
1113 \@starttoc{lot})

1114 \csname if@restonecol\endcsname\twocolumn

1115 \csname fi\endcsname}}{}

Again, the bibliography and index environments; notice that in this case we
use \bibname instead of \refname as in the definitions for the article style. The
reason for this is that in the article document style the term ‘References’ is used
in the definition of \thebibliography. In the report and book document styles
the term ‘Bibliography’ is used.

.1116 \@ifundefined{bibnamel}/,
12.
12.
12.
12.

1117 {\def\thebibliography#1{\chapter*{\bibname

1118 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}}},

1119 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}}

1120 \leftmargin\labelwidth \advance\leftmargin\labelsep

1121 \usecounter{enumi}}/

1122 \def\newblock{\hskip.1lem plus.33em minus.07em}},

1123 \sloppy\clubpenalty4000\widowpenalty\clubpenalty

1124 \sfcode‘\.=1000\relax}}{}

1125

1126 \@ifundefined{indexname}7,

1127 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
1128 \columnseprule \z@

1129 \columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}]},
1130 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}J,
1131 \thispagestyle{plain}),

1132 \parskip\z@ plus.3pt\parindent\z@ \let\item\@idxitem}}{}

Here is the abstract environment:
1133 \@ifundefined{abstractnamel}/,

1135 \null\vfil

51



12.1136 \begin{center}}
12.1137 {\bf \abstractnamel}l},
12.1138 \end{center}}}{}

And last but not least the \chapter, \appendix and \part macros.

12.1139 \@ifundefined{chaptername}{\def\@chapapp{\chaptername}}{}
12.1140 %
12.1141 \@ifundefined{appendixname}y,

12.1142 {\def\appendix{\par

12.1143 \setcounter{chapter}{0}},

12.1144 \setcounter{section}{0}}

12.1145 \def\@chapapp{\appendixname}y,

12.1146 \def\thechapter{\Alph{chapter}}}}{}
12.1147 %

12.1148 \@ifundefined{partnamel}/,

12.1149 {\def\@part [#1]#2{\ifnum \c@secnumdepth >-2\relax
12.1150 \refstepcounter{part}},

12.1151 \addcontentsline{toc}{part}{\thepart
12.1152 \hspace{lem}#1}\else

12.1153 \addcontentsline{tocHpart H#1}\fi
12.1154 \markboth{}{}/

12.1155 {\centering

12.1156 \ifnum \c@secnumdepth >-2\relax

12.1157 \huge\bf \partname{} \thepart

12.1158 \par

12.1159 \vskip 20pt \fi

12.1160 \Huge \bf

12.1161 #1\par}\@endpart}}{}}

12.1162 \or

Now we address the case where babel.def is read after the letter style.
The letter document style defines the macro \opening and some other macros
that are specific to letter. This means that we have to redefine other macros,
compared to the previous two cases.

First two macros for the material at the end of a letter, the \cc and \encl
macros.

12.1163 \@ifundefined{ccnamel}/,

12.1164 {\def\cc#1{\par\noindent

12.1165 \parbox [t]{\textwidth}}

12.1166 {\@hangfrom{\rm \ccname : }\ignorespaces #1\strut}\par}H{}
12.1167

12.1168 \@ifundefined{enclname}},

12.1169 {\def\encl#1i{\par\noindent

12.1170 \parbox [t]{\textwidth}

12.1171 {\@hangfrom{\rm \enclname : }\ignorespaces #1\strut}\par}}{}

The last thing we have to do here is to redefine the headings pagestyle:
12.1172 \@ifundefined{headtonamel}}

12.1173 {\def\ps@headings{/

12.1174 \def\@oddhead{\sl \headtoname{} \ignorespaces\toname \hfil
12.1175 \@date \hfil \pagename{} \thepagel}’

12.1176 \def\@oddfoot{}}}{}

This was the last of the four standard document styles, so if \doc@style has
another value we do nothing and just close the if construction.

12.1177 \fi

Here ends the code that can be optionally included when a version of ITEX is in
use that is dated before December 1991.

12.1178 (/names)
12.1179 (/core)

52



12.15 Cross referencing macros
The ETEX book states:

The key argument is any sequence of letters, digits, and punctuation
symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a lan-
guage that has active characters, special care has to be taken of the category
codes of these characters when they appear in an argument of the cross referenc-
ing macros.

When a cross referencing command processes its argument, all tokens in this
argument should be character tokens with category ‘letter’ or ‘other’.

The only way to accomplish this in most cases is to use the trick described in
the TEXbook [1] (Appendix D, page 382). The primitive \meaning applied to a
token expands to the current meaning of this token. For example, ‘\meaning\A’
with \A defined as ‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with
all category codes set to ‘other’ or ‘space’.

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine
it to call the original macro with the ‘sanitized’ argument. The reason why we do
it this way is that we don’t want to redefine the I#TEX macros completely in case
their definitions change (they have changed in the past).

Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence,
\orga@. ..

12.1180 (*core | shorthands)

12.1181 \def\bbl@redefine#1{}

12.1182  \edef\bbl@tempa{\expandafter\Qgobble\string#1}/,
12.1183 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1184 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.
12.1185 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such
as \ifthenelse.
12.1186 \def\bbl@redefine@long#1{Y
12.1187  \edef\bbl@tempa{\expandafter\@gobble\string#1}/,
12.1188  \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1189  \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}
12.1190 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly
more intelligent macro. A robust command foo is defined to expand to
\protect\foo,,. So it is necessary to check whether \foo, exists.
12.1191 \def\bbl@redefinerobust#1{}

12.1192  \edef\bbl@tempa{\expandafter\Qgobble\string#11}/,
12.1193  \expandafter\ifx\csname \bbl@tempa\space\endcsname\relax

12.1194 \expandafter\let\csname org@\bbl@tempa\endcsname#1

12.1195 \expandafter\edef\csname\bblO@tempa\endcsname{\noexpand\protect
12.1196 \expandafter\noexpand\csname\bbl@tempa\space\endcsnamel}’
12.1197  \else

12.1198 \expandafter\let\csname org@\bblO@tempa\expandafter\endcsname
12.1199 \csname\bbl@tempa\space\endcsname

12.1200 \fi

The result of the code above is that the command that is being redefined is always
robust afterwards. Therefor all we need to do now is define \foo,,.

12.1201  \expandafter\def\csname\bbl@tempa\space\endcsname}
This command should only be used in the preamble of the document.
12.1202 \@onlypreamble\bblOredefinerobust

53



\newlabel The macro \label writes a line with a \newlabel command into the .aux file to
define labels.

12.1203 %\bbl@redefine\newlabel#1#2{%
12.1204 % \@safe@activestrue\org@newlabel{#1}{#2}\0safeQactivesfalse}

\@newl@bel We need to change the definition of the KTEX-internal macro \@newl@bel. This
is needed because we need to make sure that shorthand characters expand to their
non-active version.

12.1205 \def\@newl@bel#1#2#3{},
First we open a new group to keep the changed setting of \protect local and then

we set the @safe@actives switch to true to make sure that any shorthand that
appears in any of the arguments immediately expands to its non-active self.

12.1206  {%

12.1207 \@safe@activestrue

12.1208 \@ifundefined{#10#2}}

12.1209 \relax

12.1210 v

12.1211 \gdef \@multiplelabels {%

12.1212 \@latex@warning@no@line{There were multiply-defined labels}}}
12.1213 \@latex@warning@no@line{Label ‘#2’ multiply definedl}%
12.1214 Yh

12.1215 \global\@namedef{#10@#2}{#3}%

12.1216 Yh

121217}

\@testdef An internal IATEX macro used to test if the labels that have been written on the
.aux file have changed. It is called by the \enddocument macro. This macro needs
to be completely rewritten, using \meaning. The reason for this is that in some
cases the expansion of \#10#2 contains the same characters as the #3; but the
character codes differ. Therefor ITEX keeps reporting that the labels may have
changed.

12.1218 \CheckCommand*\@testdef [3]{/

12.1219  \def\reserved@a{#3}%

12.1220 \expandafter \ifx \csname #1@#2\endcsname \reserved®a
12.1221  \else

12.1222 \@tempswatrue

12,1223 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite
it. First we make the shorthands ‘safe’.

12.1224 \def\@testdef #1#2#3{Y
12.1225 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which
is being checked.

12.1226  \expandafter\let\expandafter\bbl@tempa\csname #10#2\endcsname
Then we define \bbl@tempb just as \@newl@bel does it.

12.1227  \def\bbl@tempb{#3}/
12.1228 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.

12.1229  \ifx\bbl@tempa\relax

12.1230  \else

12.1231 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bblQ@tempaly,
12,1232 \fi

We do the same for \bbl@tempb.
12.1233  \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempbl}

54



If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.
12.1234  \ifx \bbl@tempa \bbl@tempb
12.1235 \else
12.1236 \@tempswatrue
12.1237  \fi}

\ref The same holds for the macro \ref that references a label and \pageref to refer-
\pageref ence a page. So we redefine \ref and \pageref. While we change these macros,
we make them robust as well (if they weren’t already) to prevent problems if they
should become expanded at the wrong moment.
12.1238 \bbl@redefinerobust\ref#1{},
12.1239  \@safe®@activestrue\org@ref{#1}\@safe@activesfalse}
12.1240 \bbl@redefinerobust\pageref#1{J,
12.1241 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}

\ecitex The macro used to cite from a bibliography, \cite, uses an internal macro,
\@citex. It is this internal macro that picks up the argument(s), so we rede-
fine this internal macro and leave \cite alone. The first argument is used for
typesetting, so the shorthands need only be deactivated in the second argument.

12.1242 \bbl@redefine\@citex [#1]#2{},
12.1243 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse
12.1244  \org@@citex[#1]{\Q@tempa}}

Unfortunately, the packages natbib and cite need a different definition of
\@citex... To begin with, natbib has a definition for \@citex with three ar-
guments... We only know that a package is loaded when \begin{document} is
executed, so we need to postpone the different redefinition.

12.1245 \AtBeginDocument{%
12.1246  \@ifpackageloaded{natbib}{%

Notice that we use \def here instead of \bbl@redefine because \org@@citex is
already defined and we don’t want to overwrite that definition (it would result in
parameter stack overflow because of a circular definition).

12.1247 \def\@citex[#1] [#2]#3{/

12.1248 \@safe@activestrue\edef\Q@tempa{#3}\0@safeQactivesfalse

12.1249 \org@@citex[#1] [#2]{\@tempal}}’

12.1250  H}}

The package cite has a definition of \@citex where the shorthands need to be
turned off in both arguments.

12.1251 \AtBeginDocument{Y

12.1252  \@ifpackageloaded{cite}{%

12.1253 \def\@citex [#1]#2{Y%

12.1254 \@safe@activestrue\org@@citex [#1]{#2}\@safe@activesfalsel),

12.1255 H

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references
from the database.

12.1256 \bbl@redefine\nocite#1{/,
12.1257 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages
such as natbib or cite are not loaded its second argument is used to typeset the
citation label. In that case, this second argument can contain active characters
but is used in an environment where \@safe@activestrue is in effect. This switch
needs to be reset inside the \hbox which contains the citation label. In order to
determine during .aux file processing which definition of \bibcite is needed we
define \bibcite in such a way that it redefines itself with the proper definition.

12.1258 \bbl@redefine\bibcite{%

55



We call \bbl@cite@choice to select the proper definition for \bibcite. This new
definition is then activated.

12.1259 \bbl@cite@choice
12.1260  \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither
natbib nor cite is loaded.

12.1261 \def\bbl@bibcite#1#2{%
12.1262  \org@bibcite{#1}{\@safeQactivesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.

12.1263 \def\bbl@cite@choice{%
First we give \bibcite its default definition.

12.1264  \global\let\bibcite\bbl@bibcite
Then, when natbib is loaded we restore the original definition of \bibcite .

12.1265 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%
For cite we do the same.

12.1266  \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%
Make sure this only happens once.

12.1267 \global\let\bbl@cite@choice\relax

12.1268 }

When a document is run for the first time, no .aux file is available, and
\bibcite will not yet be properly defined. In this case, this has to happen before
the document starts.

12.1269 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal IXTEX macros called by \bibitem that write the citation
label on the .aux file.

12.1270 \bbl@redefine\@bibitem#1{%
12.1271  \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

12.16 marks

\markright Because the output routine is asynchronous, we must pass the current language
attribute to the head lines, together with the text that is put into them. To achieve
this we need to adapt the definition of \markright and \markboth somewhat.

12.1272 \bbl@redefine\markright#1{/,

First of all we temporarily store the language switching command, using an ex-
panded definition in order to get the current value of \languagename.

12.1273  \edef\bbl@tempb{\noexpand\protect

12.1274 \noexpand\foreignlanguage{\languagenamel}}%
Then, we check whether the argument is empty; if it is, we just make sure the
scratch token register is empty.

12.1275  \def\bblQarg{#11}/,

12.1276  \ifx\bbl@arg\Gempty

12,1277 \toks@{}%

12.1278 \else
Next, we store the argument to \markright in the scratch token register, together
with the expansion of \bbl@tempb (containing the language switching command)
as defined before. This way these commands will not be expanded by using \edef
later on, and we make sure that the text is typeset using the correct language set-
tings. While doing so, we make sure that active characters that may end up in the
mark are not disabled by the output routine kicking in while \@safe@activestrue

is in effect.
12.1279 \expandafter\toks@\expandafter{)
12.1280 \bbl@tempb{\protect\bbl@restore@actives#1}}%

12.1281  \fi

56



Then we define a temporary control sequence using \edef.
12.1282  \edef\bbl@tempa{’,

When \bbl@tempa is executed, only \languagename will be expanded, because of
the way the token register was filled.

12.1283 \noexpand\org@markright{\the\toks@}}/
12.1284  \bbl@tempa
12.1285 }

\markboth The definition of \markboth is equivalent to that of \markright, except that we
\@mkboth nleed two token registers. The documentclasses report and book define and set
the headings for the page. While doing so they also store a copy of \markboth in
\@mkboth. Therefor we need to check whether \@mkboth has already been set. If

so we neeed to do that again with the new definition of \makrboth.

12.1286 \ifx\@mkboth\markboth

12.1287 \def\bbl@tempc{\let\@mkboth\markboth}
12.1288 \else

12.1289  \def\bbl@tempc{}

12.1290 \fi

Now we can start the new definition of \markboth

12.1291 \bbl@redefine\markboth#1#2{%

12.1292  \edef\bbl@tempb{\noexpand\protect

12.1293 \noexpand\foreignlanguage{\languagenamel}}/
12.1294  \def\bblQarg{#11}/,

12.1205 \ifx\bbl@arg\@empty

12.1296 \toks@{}%

12.1297 \else

12.1298 \expandafter\toks@\expandafter{),

12.1299 \bbl@tempb{\protect\bbl@restoreQactives#1}}/,
12.1300  \fi

12.1301  \def\bbl@arg{#2}},

12.1302  \ifx\bbl@arg\@empty

12.1303 \toks8{}%

12.1304 \else

12.1305 \expandafter\toks8\expandafter{)

12.1306 \bbl@tempb{\protect\bbl@restore@actives#2}}%

12.1307  \fi
12.1308  \edef\bbl@tempa{’,

12.1309 \noexpand\org@markboth{\the\toks@}{\the\toks8}}%
12.1310  \bbl@tempa
12.1311 }

and copy it to \@mkboth if necesary.

12.1312 \bbl@tempc
12.1313 (/core | shorthands)

12.17 Encoding issues (part 2)

\TeX Because documents may use font encodings other than one of the latin encodings,
\LaTex Wwe make sure that the logos of TEX and KETEX always come out in the right
encoding.

12.1314 (xcore)

12.1315 \bbl@redefine\TeX{\textlatin{\org@TeX}}
12.1316 \bbl@redefine\LaTeX{\textlatin{\org@LaTeX}}
12.1317 (/core)

12.18 Preventing clashes with other packages
12.18.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the
page a certain fragment of text appears on. This can be achieved by the following

o7



piece of code:

\ifthenelse{\isodd{\pageref{some:label}}}
{code for odd pages}
{code for even pages}

In order for this to work the argument of \isodd needs to be fully expandable.
With the above redefinition of \pageref it is not in the case of this example. To
overcome that, we add some code to the definition of \ifthenelse to make things
work.
The first thing we need to do is check if the package ifthen is loaded. This

should be done at \begin{document} time.

12.1318 (xpackage)

12.1319 \AtBeginDocument{%

12.1320  \@ifpackageloaded{ifthen}{/
Then we can redefine \ifthenelse:

12.1321 \bbl@redefine@long\ifthenelse#1#2#3{Y,

We want to revert the definition of \pageref to its original definition for the
duration of \ifthenelse, so we first need to store its current meaning.

12.1322 \let\bbl@tempa\pageref

12.1323 \let\pageref\org@pageref
Then we can set the \@safe@actives switch and call the original \ifthenelse.
In order to be able to use shorthands in the second and third arguments of
\ifthenelse the resetting of the switch and the definition of \pageref happens
inside those arguments.

12.1324 \@safe@activestrue

12.1325 \org@ifthenelse{#1}{}
12.1326 \let\pageref\bbl@tempa
12.1327 \@safe@activesfalse
12.1328 #23{%

12.1329 \let\pageref\bbl@tempa
12.1330 \@safe@activesfalse
12.1331 #3}%

12.1332 i

When the package wasn’t loaded we do nothing.

12.1333 H3%
12.1334  }

12.18.2 varioref

\@@vpageref When the package varioref is in use we need to modify its internal command
\vrefpagenum \@@vpageref in order to prevent problems when an active character ends up in
\Ref the argument of \vref.
12.1335 \AtBeginDocument{%
12.1336  \@ifpackageloaded{varioref}{%
12.1337 \bbl@redefine\@@vpageref#1 [#2]#3{}

12.1338 \@safe@activestrue
12.1339 \org@@@vpageref{#1} [#2]{#3}V,
12.1340 \@safe@activesfalsel},

The same needs to happen for \vrefpagenum.

12.1341 \bbl@redefine\vrefpagenum#i#2{%
12.1342 \@safe@activestrue

12.1343 \org@vrefpagenum{#1}{#2}%
12.1344 \@safe@activesfalsel}),

The package varioref defines \Ref to be a robust command wich uppercases
the first character of the reference text. In order to be able to do that it needs
to access the exandable form of \ref. So we employ a little trick here. We

58



redefine the (internal) command \Ref,, to call \org@ref instead of \ref. The
disadvantgage of this solution is that whenever the derfinition of \Ref changes,
this definition needs to be updated as well.

12.1345 \expandafter\def\csname Ref \endcsname#1{/,

12.1346 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\Qtempa}
12.1347 H¥x

12.1348  }

12.18.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with
the hhline package. The reason is that it uses the :’ character which is made
active by the french support in babel. Therefor we need to reload the package
when the ‘:’ is an active character.

So at \begin{document} we check whether hhline is loaded.
12.1349 \AtBeginDocument{%
12.1350 \@ifpackageloaded{hhlinel}},

Then we check whether the expansion of \normal@char: is not equal to \relax.

12.1351 {\expandafter\ifx\csname normal@char\string:\endcsname\relax

12.1352 \else
In that case we simply reload the package. Note that this happens after the
category code of the @-sign has been changed to other, so we need to temporarily
change it to letter again.

12.1353 \makeatletter

12.1354 \def\@currname{hhline}\input{hhline.sty}\makeatother
12.1355 \fi}%

12.1356 {3}

12.18.4 hyperref

\pdfstringdefDisableCommands Although a number of interworking problems between babel and hyperref are
tackled by hyperref itself we need to take care of correctly handling the shorthand
characters. When they get expanded inside a bookmark a warning will appear in
the log file which can be prevented. This is done by informing hyperref that it
should the shorthands as defined on the system level rather than at the user level.

12.1357 \AtBeginDocument{%
12.1358  \@ifundefined{pdfstringdefDisableCommands}’

12.1359 L8y

12.1360 {\pdfstringdefDisableCommands{%
12.1361 \languageshorthands{system}}J,
12.1362 Y%

12.1363 }

12.18.5 General

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat dif-
ferently as the standard classes. A symptom of this is that the command
\foreignlanguage which babel adds to the marks can end up inside the ar-
gument of \MakeUppercase. To prevent unexpected results we need to define
\FOREIGNLANGUAGE here.

12.1364 \DeclareRobustCommand{\FOREIGNLANGUAGE} [1]{%
12.1365 \lowercase{\foreignlanguage{#1}}}
12.1366 (/package)

\nfss@catcodes IATEX’s font selection scheme sometimes wants to read font definition files in the
middle of processing the document. In order to guard against any characters
having the wrong \catcodes it always calls \nfss@catcodes before loading a file.

59



Unfortunately, the characters " and ’> are not dealt with. Therefor we have to add
them until ¥TEX does that herself.

12.1367 (*core | shorthands)

12.1368 \ifx\nfss@catcodes\@undefined
12.1369 \else

12.1370  \addto\nfss@catcodes{%

12.1371 \@makeother\’%
12.1372 \@makeother\"%
12.1373 ¥

12.1374 \fi

12.1375 (/core | shorthands)

\loadlocalcfg

13 Local Language Configuration

At some sites it may be necessary to add site-specific actions to a language defini-
tion file. This can be done by creating a file with the same name as the language
definition file, but with the extension .cfg. For instance the file norsk.cfg will
be loaded when the language definition file norsk.1df is loaded.

13.1 (*core)

For plain-based formats we don’t want to override the definition of \1loadlocalcfg
from plain.def.

13.2 \ifx\loadlocalcfg\Qundefined
13.3  \def\loadlocalcfg#1{}

13.4 \InputIfFileExists{#1.cfg}

13.5 {\typeout{*************************************”*J%
13.6 * Local config file #1.cfg used~"J%

13.7 *}7,

13.8 }

13.9 {3}

13.10 \fi

Just to be compatible with ETEX 2.09 we add a few more lines of code:

13.11 \ifx\Qunexpandable@protect\Qundefined
13.12  \def\Qunexpandable@protect{\noexpand\protect\noexpand}
13.13  \long\def \protected@urite#1#2#3{}

13.14 \begingroup

13.15 \let\thepage\relax

13.16 #2%

13.17 \let\protect\@unexpandable@protect
13.18 \edef\reserved@a{\write#1{#3}}/
13.19 \reserved@a

13.20 \endgroup

13.21 \if@nobreak\ifvmode\nobreak\fi\fi
1322 }

13.23 \fi

13.24 (/core)

60



14 Driver files for the documented source code

Since babel version 3.4 all source files that are part of the babel system can be
typeset separately. But to typeset them all in one document, the file babel.drv
can be used. If you only want the information on how to use the babel system
and what goodies are provided by the language-specific files, you can run the file

user.drv through ITEX to get a user guide.

14.1 (*driver)
14.2 \documentclass{ltxdoc}
14.3 \usepackage{url,tlenc,supertabular}
14.4 \usepackage [icelandic,english]{babel}
14.5 \DoNotIndex{\!,\’,\,,\.,\=,\:,\5,\7,\/,\ 7, \ ¢, \aM}
14.6 \DoNotIndex{\@, \@ne, \@m, \@afterheading, \@date, \@endpart}
14.7 \DoNotIndex{\@hangfrom, \@idxitem, \@makeschapterhead, \@mkboth}
14.8 \DoNotIndex{\@oddfoot,\@oddhead, \@restonecolfalse, \@restonecoltrue}
14.9 \DoNotIndex{\@starttoc,\@unused}
14.10 \DoNotIndex{\accent,\active}
14.11 \DoNotIndex{\addcontentsline, \advance, \Alph, \arabic}
14.12 \DoNotIndex{\baselineskip, \begin, \begingroup, \bf, \box, \c@secnumdepth}
14.13 \DoNotIndex{\catcode, \centering, \char, \chardef,\clubpenalty}
14.14 \DoNotIndex{\columnsep, \columnseprule, \crcr, \csname}
14.15 \DoNotIndex{\day, \def,\dimen,\discretionary,\divide,\dp, \do}
14.16 \DoNotIndex{\edef,\else, \@empty, \end, \endgroup, \endcsname, \endinput}
14.17 \DoNotIndex{\errhelp, \errmessage, \expandafter,\fi,\filedate}
14.18 \DoNotIndex{\fileversion, \fmtname, \fnum@figure, \fnum@table,\fontdimen}
14.19 \DoNotIndex{\gdef,\global}
14.20 \DoNotIndex{\hbox,\hidewidth,\hfil,\hskip, \hspace,\ht,\Huge, \huge}
14.21 \DoNotIndex{\ialign,\if@twocolumn,\ifcase,\ifcat,\ifhmode, \ifmmode}
14.22 \DoNotIndex{\ifnum, \ifx,\immediate,\ignorespaces, \input,\item}
14.23 \DoNotIndex{\kern}
14.24 \DoNotIndex{\labelsep, \Large, \large, \labelwidth,\lccode,\leftmargin}
14.25 \DoNotIndex{\lineskip, \leavevmode,\let,\list,\11,\long, \lower}
14.26 \DoNotIndex{\m@ne, \mathchar, \mathaccent,\markboth, \month,\multiply}
14.27 \DoNotIndex{\newblock, \newbox, \newcount, \newdimen, \newif, \newwrite}
14.28 \DoNotIndex{\nobreak, \noexpand, \noindent, \null, \number}
14.29 \DoNotIndex{\onecolumn, \or}
14.30 \DoNotIndex{\p@,par, \parbox,\parindent,\parskip,\penalty}
14.31 \DoNotIndex{\protect, \ps@headings}
14.32 \DoNotIndex{\quotation}
14.33 \DoNotIndex{\raggedright,\raise, \refstepcounter, \relax,\rm, \setbox}
14.34 \DoNotIndex{\section, \setcounter,\settowidth, \scriptscriptstyle}
14.35 \DoNotIndex{\sfcode,\sl, \sloppy,\small,\space, \spacefactor, \strut}
14.36 \DoNotIndex{\string}
14.37 \DoNotIndex{\textwidth, \the, \thechapter, \thefigure, \thepage, \thepart}
14.38 \DoNotIndex{\thetable, \thispagestyle,\titlepage, \tracingmacros}
14.39 \DoNotIndex{\tw@, \twocolumn, \typeout, \uppercase, \usecounter}
14.40 \DoNotIndex{\vbox,\vfil, \vskip, \vspace, \vss}
14.41 \DoNotIndex{\widowpenalty, \write, \xdef,\year,\z@,\z0@skip}

Here \d1qq is defined so that an example of "’ can be given.

14.42 \makeatletter

14.43 \gdef\d1lqq{{\setbox\tw@=\hbox{, }\setbox\z@=\hbox{’’}%
14.44 \dimen\z@=\ht\z@ \advance\dimen\z@-\ht\tw@

14.45 \setbox\z@=\hbox{\lower\dimen\z@\box\z@}\ht\z@=\ht\tw@
14.46  \dp\z@=\dp\tw@ \box\z@\kern-.04em}}

The code lines are numbered within sections,

14.47 (*luser)

14.48 \@addtoreset{CodelineNo}{section}

14.49 \renewcommand\theCodelineNo{},

14.50 \reset@font\scriptsize\thesection. \arabic{CodelineNo}}

61



which should also be visible in the index; hence this redefinition of a macro from
doc.sty.

14.51 \renewcommand\codeline@wrindex[1]{\if@filesw

14.52 \immediate\write\@indexfile
14.53 {\string\indexentry{#1}J
14.54 {\number\c@section. \number\c@CodelineNo}}\fi}

The glossary environment is used or the change log, but its definition needs
changing for this document.

14.55 \renewenvironment{theglossary}{J,

14.56 \glossary@prologue/,
14.57 \GlossaryParms \let\item\@idxitem \ignorespaces}y
1458  {}

14.59 (/luser)
14.60 \makeatother
A few shorthands used in the documentation
14.61 \font\manual=logol0 7 font used for the METAFONT logo, etc.
14.62 \newcommand*\MF{{\manual META}\-{\manual FONT}}
14.63 \newcommand*\TeXhax{\TeX hax}
14.64 \newcommand*\babel{\textsf{babel}}
14.65 \newcommand*\Babel{\textsf{Babel}}
14.66 \newcommand*\m[1] {\mbox{$\langle$\it#1\/$\rangle$}}
14.67 \newcommand*\langvar{\m{lang}}

Some more definitions needed in the documentation.

14.68 % \newcommand*\note [1] {\textbf{#1}}
14.69 \newcommand*\note [1]{}

14.70 \newcommand*\bs1l{\protect\bslash}
14.71 \newcommand*\Lopt [1]{\textsf{#1}}
14.72 \newcommand*\Lenv [1]{\textsf{#1}}
14.73 \newcommand*\file[1]{\texttt{#1}}
14.74 \newcommand*\cls [1]{\texttt{#1}}
14.75 \newcommand*\pkg [1] {\texttt{#1}}
14.76 \newcommand*\langdeffile [1]{/
14.77 (—user) \clearpage

14.78  \DocInput{#1}}

When a full index should be generated uncomment the line with \EnableCrossrefs.
Beware, processing may take some time. Use \DisableCrossrefs when the index
is ready.

14.79 % \EnableCrossrefs
14.80 \DisableCrossrefs

Inlude the change log.
14.81 (—user) \RecordChanges
The index should use the linenumbers of the code.
14.82 (—user)\CodelineIndex
Set everything in \MacroFont instead of \AltMacroFont
14.83 \setcounter{StandardModuleDepth}{1}
For the user guide we only want the description parts of all the files.
14.84 (+user)\OnlyDescription
Here starts the document

14.85 \begin{document}
14.86 \DocInput{babel.dtx}

All the language definition files.

14.87 (4user)\clearpage

14.88 \langdeffile{esperanto.dtx}
14.89 \langdeffile{interlingua.dtx}
14.90 %

14.91 \langdeffile{dutch.dtx}

62



14.92 \1langdeffile{english.dtx}
14.93 \langdeffile{germanb.dtx}
14.94 \langdeffile{ngermanb.dtx}
14.95 %
14.96 \langdeffile{breton.dtx}
14.97 \langdeffile{welsh.dtx}
14.98 \langdeffile{irish.dtx}
14.99 \langdeffile{scottish.dtx}
14.100 %
14.101 \langdeffile{greek.dtx}
14.102 %
14.103 \langdeffile{frenchb.dtx}
14.104 \langdeffile{italian.dtx}
14.105 \langdeffile{latin.dtx}
14.106 \langdeffile{portuges.dtx}
14.107 \langdeffile{spanish.dtx}
14.108 \langdeffile{catalan.dtx}
14.109 \langdeffile{galician.dtx}
14.110 \langdeffile{basque.dtx}
14.111 \langdeffile{romanian.dtx}
14.112 %
14.113 \langdeffile{danish.dtx}
14.114 \langdeffile{icelandic.dtx}
14.115 \langdeffile{norsk.dtx}
14.116 \langdeffile{swedish.dtx}
14.117 \langdeffile{samin.dtx}
14.118 ¥
14.119 \langdeffile{finnish.dtx}
14.120 \langdeffile{magyar.dtx}
14.121 \langdeffile{estonian.dtx}
14.122 %
14.123 \langdeffile{albanian.dtx}
14.124 \langdeffile{croatian.dtx}
14.125 \langdeffile{czech.dtx}
14.126 \langdeffile{polish.dtx}
14.127 \langdeffile{serbian.dtx}
14.128 \langdeffile{slovak.dtx}
14.129 \langdeffile{slovene.dtx}
14.130 \langdeffile{russianb.dtx}
14.131 \langdeffile{bulgarian.dtx}
14.132 \langdeffile{ukraineb.dtx}
14.133 %
14.134 \langdeffile{lsorbian.dtx}
14.135 \langdeffile{usorbian.dtx}
14.136 \langdeffile{turkish.dtx}
14.137 %
14.138 \langdeffile{hebrew.dtx}
14.139 \DocInput{hebinp.dtx}
14.140 \DocInput{hebrew.fdd}
14.141 \DocInput{heb209.dtx}
14.142 \langdeffile{bahasa.dtx}
14.143 \langdeffile{bahasam.dtx}
14.144 %\langdeffile{sanskrit.dtx}
14.145 %\langdeffile{kannada.dtx}
14.146 %\langdeffile{nagari.dtx}
14.147 %\langdeffile{tamil.dtx}
14.148 \clearpage
14.149 \DocInput{bbplain.dtx}

Finally print the index and change log (not for the user guide).

14.150 (*luser)
14.151 \clearpage
14.152 \def\filename{index}

63



14.153 \PrintIndex

14.154 \clearpage

14.155 \def\filename{changes}
14.156 \PrintChanges

14.157 {/luser)

14.158 \end{document}

14.159 (/driver)

64



15 Conclusion

A system of document options has been presented that enable the user of I¥TEX
to adapt the standard document classes of IMTEX to the language he or she prefers
to use. These options offer the possibility of switching between languages in one
document. The basic interface consists of using one option, which is the same for
all standard document classes.

In some cases the language definition files provide macros that can be useful to
plain TEX users as well as to I¥TEX users. The babel system has been implemented
so that it can be used by both groups of users.

16 Acknowledgements

I would like to thank all who volunteered as (3-testers for their time. I would like to
mention Julio Sanchez who supplied the option file for the Spanish language and
Maurizio Codogno who supplied the option file for the Italian language. Michel
Goossens supplied contributions for most of the other languages. Nico Poppelier
helped polish the text of the documentation and supplied parts of the macros for
the Dutch language. Paul Wackers and Werenfried Spit helped find and repair
bugs.

During the further development of the babel system I received much help from
Bernd Raichle, for which I am grateful.

17 References

[1] Donald E. Knuth, The TgXbook, Addison-Wesley, 1986.

[2] Leslie Lamport, ETEX, A document preparation System, Addison-Wesley,
1986.

[3] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst. SDU
Uitgeverij (’s-Gravenhage, 1988). A Dutch book on layout design and typog-
raphy.

[4] Hubert Partl, German TgX, TUGboat 9 (1988) #1, p. 70-72.
[5] Leslie Lamport, in: TeXhax Digest, Volume 89, #13, 17 February 1989.

[6] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of
national BTEX styles, TUGboat 10 (1989) #3, p. 401-406.

[7] Joachim Schrod, International BTEX is ready to use, TUGboat 11 (1990) #1,
p- 87-90.

65



\captionsesperanto

18 The Esperanto language

The file esperanto.dtx'® defines all the language-specific macros for the Es-
peranto language.

For this language the character
given of its purpose.

is made active. In table 2 an overview is

¢ gives ¢ with hyphenation in the rest of the word al-
lowed, this works for ¢, C, g, G, H, J, s, S, z, Z
~h prevents h from becoming too tall

~j gives]

~u gives 1, with hyphenation in the rest of the word
allowed

~U gives U, with hyphenation in the rest of the word
allowed

~| inserts a \discretionary{-}{}{}

Table 2: The functions of the active character for Esperanto.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

18.1 (*code)
18.2 \LdfInit{esperanto}\captionsesperanto

When this file is read as an option, i.e. by the \usepackage command,
esperanto will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \1@esperanto to see whether we have to do some-
thing here.

18.3 \ifx\1l@esperanto\Qundefined
18.4 \@nopatterns{Esperanto}
18.5 \adddialect\l@esperantoO\fi

The next step consists of defining commands to switch to the Esperanto lan-
guage. The reason for this is that a user might want to switch back and forth
between languages.

The macro \captionsesperanto defines all strings used in the four standard
documentclasses provided with ETEX.

18.6 \addto\captionsesperanto{’

18.7 \def\prefacename{Anta\u{ul}parolo}y,
18.8 \def\refname{Cita\~\j{}oj}%

18.9 \def\abstractname{Resumol}y,

18.10  \def\bibname{Bibliografiol}

18.11  \def\chaptername{{\~C}apitro}’

18.12  \def\appendixname{Apendico}’

18.13  \def\contentsname{Enhavol}J,

18.14 \def\listfigurename{Listo de figuroj}/
18.15 \def\listtablename{Listo de tabelojl}’
18.16  \def\indexname{Indekso}/

18.17 \def\figurename{Figuro}j,

18.18 \def\tablename{Tabelol}},

18.19  \def\partname{Partol}/,

18.20  \def\enclname{Aldono(j)}%

18.21  \def\ccname{Kopie all}j,

18.22  \def\headtoname{Al}},

18.23  \def\pagename{Pa\~gol}/,

18.24  \def\subjectname{Temo}’

18.25  \def\seename{vidu}} a~u: vd.

10The file described in this section has version number ? and was last revised on ?. A con-
tribution was made by Ruiz-Altaba Marti (ruizaltb@cernvm.cern.ch). Code from the file
esperant.sty by Jorg Knappen (knappen@vkpmzd.kph.uni-mainz.de) was included.

66



\dateesperanto

\extrasesperanto

\noextrasesperanto

\Esper

\esper

18.26  \def\alsoname{vidu anka\u{u}}’% a~u vd. anka\uf{u}
18.27  \def\proofname{Pruvol}

18.28  \def\glossaryname{Glosaro}/

18.29 }

The macro \dateesperanto redefines the command \today to produce Esperanto
dates.

18.30 \def\dateesperanto{/
18.31  \def\today{\number\day{--a}~de~\ifcase\month\or

18.32 januaro\or februaro\or marto\or aprilo\or majo\or junio\or
18.33 julio\or a\u{ul}gusto\or septembro\or oktobro\or novembro\or
18.34 decembro\fi,\space \number\year}}
The macro \extrasesperanto performs all the extra definitions needed for the

Esperanto language. The macro \noextrasesperanto is used to cancel the actions

of \extrasesperanto.
For Esperanto the

definition may vary.

character is made active. This is done once, later on its

18.35 \initiate®@active@char{~}

Because the character ~ is used in math mode with quite a different purpose we
need to add an extra level of evaluation to the definition of the active ~. It checks
whether math mode is active; if so the shorthand mechanism is bypassed by a
direct call of \normal@char~.

18.36 \addto\extrasesperanto{\languageshorthands{esperanto}}

18.37 \addto\extrasesperanto{\bbl@activate{~}}

18.38 \addto\noextrasesperanto{\bbl@deactivate{~}}

In order to prevent problems with the active ~ we add a shorthand on system
level which expands to a ‘normal ~.
18.39 \declare@shorthand{system}{~}{\csname normal@char\string~\endcsname}
And here are the uses of the active ~:

18.40 \declare@shorthand{esperanto}{~c}{\~{c}\allowhyphens}

18.41 \declare@shorthand{esperanto}{~C}H{\~{C}\allowhyphens}

18.42 \declare@shorthand{esperanto}{~g}{\~{g}\allowhyphens}

18.43 \declare@shorthand{esperanto}{~G}{\~{G}\allowhyphens}

18.44 \declare@shorthand{esperanto}{~h}{h\1lap{\~{}}\allowhyphens}
18.45 \declare@shorthand{esperanto}{"H}{\~{H}\allowhyphens}

18.46 \declare@shorthand{esperanto}{~j}{\~"{\j}\allowhyphens}

18.47 \declare@shorthand{esperanto}{~J}H\~{J}\allowhyphens}

18.48 \declare@shorthand{esperanto}{~s}{\"{s}\allowhyphens}

18.49 \declare@shorthand{esperanto}{~S}{\~{S}\allowhyphens}

18.50 \declare@shorthand{esperanto}{~u}{\u u\allowhyphens}

18.51 \declare@shorthand{esperanto}{~U}{\u U\allowhyphens}

18.52 \declare@shorthand{esperanto}{~|}{\discretionary{-}{}{}\allowhyphens}

In esperant.sty Jorg Knappen provides the macros \esper and \Esper that can
be used instead of \alph and \Alph. These macros are available in this file as
well.
Their definition takes place in two steps. First the toplevel.
18.53 \def \esper#1{\@esper{\@nameuse{cO#1}}}
18.54 \def \Esper#1{\Q@Esper{\@nameuse{c@#1}}}
Then the second level.
18.55 \def \Q@esper#1{/
18.56  \ifcase#1\or alor b\or c\or \~cl\or d\or e\or flor g\or \~“g\or
18.57 h\or h\1llap{\~{}}\or ilor j\or \~"\j\or k\or 1\or m\or n\or o\or
18.58 plor r\or s\or \~s\or t\or ulor \u{ul\or v\or z\else\@ctrerr\fi}
18.59 \def\Q@Esper#1{%
18.60 \ifcase#1\or A\or B\or C\or \"C\or D\or E\or F\or G\or \"G\or
18.61 H\or \~H\or I\or J\or \~J\or K\or L\or M\or N\or O\or
18.62 P\or R\or S\or \~S\or T\or U\lor \u{Ul\or V\or Z\else\@ctrerr\fi}

67



\hodiau

\hodiaun

In esperant.sty Jorg Knappen provides two alternative macros for \today,
\hodiau and \hodiaun. The second macro produces an accusative version of
the date in Esperanto.

18.63 \addto\dateesperanto{\def\hodiau{la \today}}

18.64 \def\hodiaun{la \number\day --an~de~\ifcase\month\or

18.65  januaro\or februaro\or marto\or aprilolor majo\or junio\or

18.66  julio\or a\u{ul}gusto\or septembro\or oktobro\or novembro\or

18.67 decembro\fi, \space \number\year}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

18.68 \1df@f inish{esperanto}
18.69 (/code)

68



19 The Interlingua language

The file interlingua.dtx!! defines all the language definition macros for the
Interlingua language. This file was contributed by Peter Kleiweg, kleiweg at
let.rug.nl.

Interlingua is an auxiliary language, built from the common vocabulary of
Spanish /Portuguese, English, Italian and French, with some normalisation of
spelling. The grammar is very easy, more similar to English’s than to neolatin
languages. The site http://www.interlingua.com is mostly written in interlin-
gua (as is http://interlingua.altervista.org), in case you want to read some
sample of it.

You can have a look at the grammar at http://www.geocities.com/linguablau

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

19.1 (*xcode)
19.2 \LdfInit{interlingua}{captionsinterlingua}

When this file is read as an option, i.e. by the \usepackage command,
interlingua could be an ‘unknown’ language in which case we have to make
it known. So we check for the existence of \1@interlingua to see whether we
have to do something here.

19.3 \ifx\undefined\1l@interlingua
19.4 \@nopatterns{Interlingua}
19.5 \adddialect\l@interlinguaO\fi

The next step consists of defining commands to switch to (and from) the In-
terlingua language.

\interlinguahyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

19.6 \providehyphenmins{interlingua}{\tw@\tw@}

\captionsinterlingua The macro \captionsinterlingua defines all strings used in the four standard
documentclasses provided with EXTEX.

19.7 \def\captionsinterlingua{%

19.8 \def\prefacename{Prefaciol},
19.9 \def\refname{Referentias}
19.10 \def\abstractname{Summariol}y
19.11  \def\bibname{Bibliographial’
19.12  \def\chaptername{Capitulo}’
19.13  \def\appendixname{Appendicel}’,
19.14 \def\contentsname{Contento}y
19.15  \def\listfigurename{Lista de figuras}’
19.16 \def\listtablename{Lista de tabellasl}y,
19.17  \def\indexname{Indicel}

19.18  \def\figurename{Figural}j,

19.19  \def\tablename{Tabellal},

19.20 \def\partname{Partel}/,

19.21  \def\enclname{Incluso}’

19.22  \def\ccname{Copial}l/

19.23  \def\headtoname{A}%

19.24 \def\pagename{Pagina},

19.25 \def\seename{videl}/,

19.26  \def\alsoname{vide etiam}},
19.27  \def\proofname{Provaly,

19.28  \def\glossaryname{Glossariol}},
19.29  }

\dateinterlingua The macro \dateinterlingua redefines the command \today to produce Inter-
lingua dates.

" The file described in this section has version number v1.6 and was last revised on 2005,/03/30.

69


http://www.interlingua.com
http://interlingua.altervista.org
http://www.geocities.com/linguablau

\extrasinterlingua

\noextrasinterlingua

19.30 \def\dateinterlingua{’
19.31  \def\today{le~\number\day\space de \ifcase\month\or

19.32 januario\or februariolor martio\or aprillor maio\or junio\or
19.33 juliolor augusto\or septembre\or octobre\or novembre\or

19.34 decembre\fi

19.35 \space \number\yearl}}

The macro \extrasinterlingua will perform all the extra definitions needed for
the Interlingua language. The macro \noextrasinterlingua is used to cancel
the actions of \extrasinterlingua. For the moment these macros are empty but
they are defined for compatibility with the other language definition files.

19.36 \addto\extrasinterlingua{}
19.37 \addto\noextrasinterlingua{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

19.38 \1ldf@finish{interlingua}
19.39 (/code)

70



20 The Dutch language

The file dutch.dtx'? defines all the language-specific macros for the Dutch lan-
guage and the ‘Afrikaans’ version'® of it.

For this language the character " is made active. In table 3 an overview is
given of its purpose. One of the reasons for this is that in the Dutch language
a word with a dieresis can be hyphenated just before the letter with the umlaut,
but the dieresis has to disappear if the word is broken between the previous letter
and the accented letter.

In [3] the quoting conventions for the Dutch language are discussed. The
preferred convention is the single-quote Anglo-American convention, i.e. ‘This is
a quote’. An alternative is the slightly old-fashioned Dutch method with initial
double quotes lowered to the baseline, ,, This is a quote”, which should be typed as
"‘This is a quote"’.

"a \"a which hyphenates as -a; also implemented for
the other letters.

"y puts a negative kern between i and j

"Y puts a negative kern between I and J

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"~ to produce a hyphencharcter without the following
\discretionary{}{}{}.

""  to produce an invisible ‘breakpoint’.

"¢ lowered double left quotes (see example below).

"> normal double right quotes.

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 3: The extra definitions made by dutch.1ldf

20.1 % \changes{dutch-3.8a}{1996/10/04}{made check dependant on
20.2 % \cs{CurrentOption}}

20.3 %
20.4 % The macro |\LdfInit| takes care of preventing that this file is
20.5 % loaded more than once, checking the category code of the

20.6 % \texttt{@} sign, etc.

20.7 % \changes{dutch-3.8a}{1996/10/30}{Now use \cs{LdfInit} to perform
20.8 % initial checks}

20.9 % \begin{macrocode}

20.10 (*xcode)

20.11 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, dutch
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@dutch or 1@afrikaans to see whether we have to do
something here.

First we try to establish with which option we are being processed.

20.12 \def\bbl@tempa{dutch}
20.13 \ifx\CurrentOption\bbl@tempa

If it is dutch then we first check if the Dutch hyphenation patterns wer loaded,
20.14  \ifx\l@dutch\undefined

if no we issue a warning and make dutch a ‘dialect’ of either the hyphenation
patterns that were loaded in slot 0 or of ‘afrikaans’ when it is available.

12The file described in this section has version number v3.8i, and was last revised on
2005/03/30.
Bcontributed by Stoffel Lombard (1lombc@b31pc87.up.ac.za)

71



20.15 \@nopatterns{Dutch}
20.16 \ifx\l@afrikaans\undefined
20.17 \adddialect\1l@dutchO
20.18 \else
20.19 \adddialect\1l@dutch\l@afrikaans
20.20 \fi
20.21  \fi
The next step consists of defining commands to switch to (and from) the Dutch
language.

\captionsdutch The macro \captionsdutch defines all strings used in the four standard document
classes provided with XTEX.

20.22
20.23
20.24
20.25
20.26
20.27
20.28
20.29
20.30
20.31
20.32
20.33
20.34
20.35
20.36
20.37
20.38
20.39
20.40
20.41
20.42
20.43
20.44
20.45
20.46
20.47
20.48

\begingroup
\catcode‘\"\active
\def\x{\endgroup
\def\captionsdutch{%
\def\prefacename{Voorwoord}
\def\refname{Referenties}y,
\def\abstractname{Samenvatting}/
\def\bibname{Bibliografiel},
\def\chaptername{Hoofdstuk}/
\def\appendixname{B"ylage}%
\def\contentsname{Inhoudsopgavel}
\def\listfigurename{L"yst van figurenl},
\def\listtablename{L"yst van tabellen},
\def\indexname{Index}’
\def\figurename{Figuurl}y,
\def\tablename{Tabel},
\def\partname{Deel}%
\def\enclname{B"ylage (n)}%
\def\ccname{cc}y,
\def\headtoname{Aan}
\def\pagename{Paginalj,
\def\seename{zie}%
\def\alsoname{zie ook}’
\def\proofname{Bew"ys}/
\def\glossaryname{Verklarende Woordenl"yst}%
}
N\x

\datedutch The macro \datedutch redefines the command \today to produce Dutch dates.

20.49
20.50
20.51
20.52
20.53
20.54

\def\datedutch{’
\def\today{\number\day~\ifcase\month\or
januarilor februarilor maart\or aprillor meilor junilor
julilor augustus\or september\or oktober\or november\or
december\fi
\space \number\yearl}}

When the option with which this file is being process was not dutch we assume

it was afrikaans. We perform a similar check on the availability of the hyphenation

paterns.
20.55 \else
20.56 \ifx\l@afrikaans\undefined
20.57 \@nopatterns{Afrikaans}
20.58 \ifx\1l@dutch\undefined
20.59 \adddialect\1l@afrikaansO
20.60 \else
20.61 \adddialect\l@afrikaans\1l@dutch
20.62 \fi
20.63 \fi

72



\captionsafrikaans Now is the time to define the words for ‘Afrikaans’.
20.64 \def\captionsafrikaans{’

20.65 \def\prefacename{Voorwoordl}y,

20.66 \def\refname{Verwysings}%

20.67 \def\abstractname{Samevatting}’
20.68 \def\bibname{Bibliografie}/,

20.69 \def\chaptername{Hoofstuk}%

20.70 \def\appendixname{Bylae}%

20.71 \def\contentsname{Inhoudsopgawel
20.72 \def\listfigurename{Lys van figure}},
20.73 \def\listtablename{Lys van tabelle}’
20.74 \def\indexname{Inhoud}’

20.75 \def\figurename{Figuur}%

20.76 \def\tablename{Tabel},

20.77 \def\partname{Deell}y,

20.78 \def\enclname{Bylae(n)}%

20.79 \def\ccname{a.a.}’

20.80 \def\headtoname{Aan}y

20.81 \def\pagename{Bladsy}%

20.82 \def\seename{sien}y,

20.83 \def\alsoname{sien ook}

20.84 \def\proofname{Bewys}/

20.85 }

\dateafrikaans Here is the ‘Afrikaans’ version of the date macro.

20.86 \def\dateafrikaans{%
20.87 \def\today{\number\day~\ifcase\month\or

20.88 Januarie\or Februarie\or Maart\or Aprillor Meilor Junie\or
20.89 Julie\or Augustus\or September\or Oktober\or November\or
20.90 Desember\fi

20.91 \space \number\yearl}}

20.92 \fi

\extrasdutch The macros \extrasdutch and \captionsafrikaans will perform all the ex-

\extrasafrikaans tra definitions needed for the Dutch language. The macros \noextrasdutch

\noextrasdutch and noextrasafrikaans is used to cancel the actions of \extrasdutch and
\noextrasafrikaans \captionsafrikaans.

For Dutch the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the dutch group of shorthands should
be used.

20.93 \initiate@active@char{"}
Both version of the language use the same set of shorthand definitions althoug the
‘ij” is not used in Afrikaans.

20.94 \@namedef{extras\CurrentOption}{\languageshorthands{dutch}}

20.95 \expandafter\addto\csname extras\CurrentOption\endcsname{%
20.96 \bbl@activate{"}}
The ‘umlaut’ character should be positioned lower on all vowels in Dutch texts.

20.97 \expandafter\addto\csname extras\CurrentOption\endcsname{%
20.98 \umlautlow\umlautelow}

20.99 \@namedef{noextras\CurrentOption}{/

20.100 \umlauthigh}

\dutchhyphenmins The dutch hyphenation patterns can be used with \lefthyphenmin set to 2 and

\afrikaanshyphenmins \righthyphenmin set to 3.
20.101 \providehyphenmins{\CurrentOption}{\tw@\three}

\@trema In the Dutch language vowels with a trema are treated specially. If a hyphenation
occurs before a vowel-plus-trema, the trema should disappear. To be able to do

73



this we could first define the hyphenation break behaviour for the five vowels, both
lowercase and uppercase, in terms of \discretionary. But this results in a large
\if-construct in the definition of the active ". Because we think a user should not
use " when he really means something like * > we chose not to distinguish between
vowels and consonants. Therefore we have one macro \@trema which specifies the
hyphenation break behaviour for all letters.

20.102 \def\@trema#1{\allowhyphens\discretionary{-}{#1}{\"{#1}}\allowhyphens}

Now we can define the doublequote macros: the tremas,

20.103 \declare@shorthand{dutch}{"a}{\textormath{\@trema a}{\ddot al}}
20.104 \declare@shorthand{dutch}{"e}{\textormath{\@trema e}{\ddot el}}
20.105 \declare@shorthand{dutch}{"i}{\textormath

20.106  {\allowhyphens\discretionary{-}i}{\"{\i}}\allowhyphens}/,
20.107  {\ddot \imathl}}

20.108 \declare@shorthand{dutch}{"o}{\textormath{\@trema o}{\ddot ol}}
20.109 \declare@shorthand{dutch}{"u}{\textormath{\@trema u}{\ddot ul}}

dutch quotes,
20.110 \declare@shorthand{dutch}{" ‘}{/
20.111  \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
20.112 \declare@shorthand{dutch}{" ’}{/
20.113  \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
and some additional commands:
20.114 \declare@shorthand{dutch}{"-}{\nobreak-\bbl@allowhyphens}
20.115 \declare@shorthand{dutch}{"“}{\textormath{\leavevmode\hbox{-}}{-}}
20.116 \declare@shorthand{dutch}{" |}/
20.117  \textormath{\discretionary{-}{}{\kern.03em}}{}}
20.118 \declare@shorthand{dutch}{""}{\hskip\z@skip}
20.119 \declare@shorthand{dutch}{ "y} \textormath{\ij{}}{\ddot y}}
20.120 \declare@shorthand{dutch}{"Y}{\textormath{\IJ{}}{\ddot Y}}

To enable hyphenation in two words, written together but separated by a slash,
as in ‘uitdrukking/opmerking’ we define the command "/.

20.121 \declare@shorthand{dutch}{"/}{\textormath
20.122  {\bbl@allowhyphens\discretionary{/}{}{/}\bbl@allowhyphens}{}}

\- All that is left now is the redefinition of \-. The new version of \- should indicate
an extra hyphenation position, while allowing other hyphenation positions to be
generated automatically. The standard behaviour of TEX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words
are quite normal and all one needs is a means to indicate an extra hyphenation
position on top of the ones that TEX can generate from the hyphenation patterns.

20.123 \expandafter\addto\csname extras\CurrentOption\endcsname{}

20.124 \babel@save\-}

20.125 \expandafter\addto\csname extras\CurrentOption\endcsname{/,

20.126  \def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

20.127 \1df@f inish\CurrentOption
20.128 (/code)

74



21 The English language

The file english.dtx'* defines all the language definition macros for the English
language as well as for the American and Australian version of this language. For
the Australian version the British hyphenation patterns will be used, if available,
for the Canadian variant the American patterns are selected.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

21.1 (xcode)
21.2 \Ldf Init\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, english
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@english to see whether we have to do something
here.

We allow for the british english patterns to be loaded as either ‘british’, or
‘UKenglish’. When neither of those is known we try to define \1@english as an
alias for \1@american or \1@USenglish.

21.3 \ifx\1l@english\Q@undefined
21.4  \ifx\1@UKenglish\@undefined

21.5 \ifx\1@british\@undefined

21.6 \ifx\1l@american\@undefined

21.7 \ifx\1@USenglish\@undefined

21.8 \ifx\1l@canadian\@undefined

21.9 \ifx\1@australian\@undefined
21.10 \ifx\1l@newzealand\@undefined
21.11 \@nopatterns{English}
21.12 \adddialect\1@englishO
21.13 \else

21.14 \let\1l@english\l@newzealand
21.15 \fi

21.16 \else

21.17 \let\1l@english\l@australian
21.18 \fi

21.19 \else

21.20 \let\1l@english\l@canadian
21.21 \fi

21.22 \else

21.23 \let\1l@english\1@USenglish

21.24 \fi

21.25 \else

21.26 \let\1l@english\l@american

21.27 \fi

21.28 \else

21.29 \let\1@english\1@british

21.30 \fi

21.31 \else

21.32 \let\1@english\1@UKenglish

21.33  \fi

21.34 \fi

Because we allow ‘british’ to be used as the babel option we need to make sure
that it will be recognised by \selectlanguage. In the code above we have made
sure that \1@english was defined. Now we want to make sure that \1@british
and \1QUKenglish are defined as well. When either of them is we make them
equal to each other, when neither is we fall back to the default, \1@english.
21.35 \ifx\1@british\@undefined
21.36  \ifx\1QUKenglish\@undefined

14The file described in this section has version number v3.30 and was last revised on
2005/03/30

75



\englishhyphenmins

21.37 \adddialect\1@british\1@english

21.38 \adddialect\1@UKenglish\1l@english
21.39 \else

21.40 \let\1@british\1@UKenglish

2141  \fi

21.42 \else

21.43 \let\1l@UKenglish\1l@british

21.44 \fi

‘American’ is a version of ‘English’ which can have its own hyphenation patterns.
The default english patterns are in fact for american english. We allow for the
patterns to be loaded as ‘english’ ‘american’ or ‘USenglish’.

21.45 \ifx\1l@american\@undefined

21.46  \ifx\1@USenglish\@undefined

When the patterns are not know as ‘american’ or ‘USenglish’ we add a “dialect”.

21.47 \adddialect\l@american\1l@english
21.48 \else

21.49 \let\1l@american\1@USenglish

21.50 \fi

21.51 \else

Make sure that USenglish is known, even if the patterns were loaded as ‘american’.

21.52  \ifx\1@USenglish\@undefined

21.53 \let\1@USenglish\l@american
21.54  \fi
21.55 \fi

‘Canadian’ english spelling is a hybrid of British and American spelling. Al-
though so far no special ‘translations’ have been reported we allow this file to be
loaded by the option candian as well.

21.56 \ifx\1@canadian\@undefined
21.57 \adddialect\l@canadian\l@american
21.58 \fi

‘Australian’ and ‘New Zealand’ english spelling seem to be the same as British
spelling. Although so far no special ‘translations’ have been reported we allow
this file to be loaded by the options australian and newzealand as well.

21.59 \ifx\1l@australian\@undefined

21.60 \adddialect\l@australian\1@british
21.61 \fi

21.62 \ifx\1l@newzealand\@undefined

21.63 \adddialect\l@newzealand\1@british
21.64 \fi

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

21.65 \providehyphenmins{\CurrentOption}{\tw@\thred}

The next step consists of defining commands to switch to (and from) the En-
glish language.

\captionsenglish The macro \captionsenglish defines all strings used in the four standard docu-

ment classes provided with A TEX.

21.66 \@namedef{captions\CurrentOption}{%
21.67 \def\prefacename{Prefacel/,

21.68 \def\refname{References}/,

21.69 \def\abstractname{Abstractl}’

21.70  \def\bibname{Bibliography}%

21.71  \def\chaptername{Chapterl}/,

21.72  \def\appendixname{Appendix}/

21.73 \def\contentsname{Contents}’

21.74 \def\listfigurename{List of Figures},

76



21.75 \def\listtablename{List of Tables}}
21.76  \def\indexname{Index}/

21.77  \def\figurename{Figure}’
21.78 \def\tablename{Tablel},

21.79  \def\partname{Part}/,

21.80 \def\enclname{encl}/,

21.81 \def\ccname{ccl}’

21.82 \def\headtoname{To}/,

21.83 \def\pagename{Pagel/

21.84 \def\seename{seelV

21.85 \def\alsoname{see alsol}%
21.86  \def\proofname{Proofl}y,

21.87 \def\glossaryname{Glossaryl}/,
21.88 }

\dateenglish In order to define \today correctly we need to know whether it should be ‘en-
glish’, ‘australian’, or ‘american’. We can find this out by checking the value of
\CurrentOption.

21.89 \def\bbl@tempa{british}

21.90 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{UK}\fi
21.91 \def\bbl@tempa{UKenglish}

21.92 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{UK}\fi
21.93 \def\bbl@tempa{american}

21.94 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{US}\fi
21.95 \def\bbl@tempa{USenglish}

21.96 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{USI\fi
21.97 \def\bbl@tempa{canadian}

21.98 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{USI\fi
21.99 \def\bbl@tempa{australian}

21.100 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{AU}\fi
21.101 \def\bbl@tempa{newzealand}

21.102 \ifx\CurrentOption\bbl@tempa\def\bblO@tempb{AUI\fi

The macro \dateenglish redefines the command \today to produce English
dates.

21.103 \def\bbl@tempa{UK}
21.104 \ifx\bbl@tempa\bbl@tempb
21.105 \@namedef{date\CurrentOption}{%

21.106 \def\today{\ifcase\day\or

21.107 1st\or 2nd\or 3rd\or 4th\or 5th\or

21.108 6th\or 7th\or 8th\or 9th\or 10th\or

21.109 11th\or 12th\or 13th\or 14th\or 15th\or

21.110 16th\or 17th\or 18th\or 19th\or 20th\or

21.111 21st\or 22nd\or 23rd\or 24th\or 25th\or

21.112 26th\or 27th\or 28th\or 29th\or 30th\or

21.113 31st\fi~\ifcase\month\or

21.114 January\or February\or March\or Aprillor May\or June\or
21.115 July\or August\or September\or October\or November\or
21.116 December\fi\space \number\year}}

\dateaustralian Now, test for ‘australian’ or ‘american’.
21.117 \else
The macro \dateaustralian redefines the command \today to produce Aus-
tralian resp. New Zealand dates.

21.118 \def\bbl@tempa{AU}
21.119  \ifx\bbl@tempa\bbl@tempb

21.120 \@namedef{date\CurrentOption}{%

21.121 \def\today{\number\day~\ifcase\month\or

21.122 January\or February\or March\or Aprillor May\or June\or
21.123 July\or August\or September\or October\or November\or
21.124 December\fi\space \number\year}}

7



\dateamerican The macro \dateamerican redefines the command \today to produce American

dates.
21.125 \else
21.126 \@namedef{date\CurrentOption}{%
21.127 \def\today{\ifcase\month\or
21.128 January\or February\or March\or Aprillor May\or June\or
21.129 July\or August\or September\or October\or November\or
21.130 December\fi \space\number\day, \number\yearl}}
21.131  \fi
21.132 \fi

\extrasenglish The macro \extrasenglish will perform all the extra definitions needed for the
\noextrasenglish English language. The macro \noextrasenglish is used to cancel the actions of
\extrasenglish. For the moment these macros are empty but they are defined

for compatibility with the other language definition files.

21.133 \@namedef{extras\CurrentOption}{}
21.134 \@namedef{noextras\CurrentOption}{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

21.135 \1df@f inish\CurrentOption
21.136 (/code)

78



22 The German language

The file germanb.dtx'® defines all the language definition macros for the German
language as well as for the Austrian dialect of this language'.

For this language the character " is made active. In table 4 an overview is given
of its purpose. One of the reasons for this is that in the German language some
character combinations change when a word is broken between the combination.
Also the vertical placement of the umlaut can be controlled this way. The quotes

"a \"a, also implemented for the other lowercase and
uppercase vowels.

"s  to produce the German § (like \ss{}).

"z  to produce the German $ (like \ss{}).

"ck for ck to be hyphenated as k-k.

"ff for £f to be hyphenated as £f-£f, this is also imple-
mented for I, m, n, p, r and t

"S  for SS to be \uppercase{"s}.

"Z  for SZ to be \uppercase{"z}.

" disable ligature at this position.

"— an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

" for a compound word mark without a breakpoint.

"= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

e for German left double quotes (looks like ,,).

"o for German right double quotes.

"< for French left double quotes (similar to <<).

">  for French right double quotes (similar to >>).

Table 4: The extra definitions made by german.1ldf

in table 4 can also be typeset by using the commands in table 5.

\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like “).
\glq for German left single quotes (looks like ,).
\grq for German right single quotes (looks like ‘).
\flqq for French left double quotes (similar to <<).
\frqq for French right double quotes (similar to >>).
\flq for (French) left single quotes (similar to <).
\frq for (French) right single quotes (similar to >).
\dq the original quotes character (").

Table 5: More commands which produce quotes, defined by german.1df

When this file was read through the option germanb we make it behave as if
german was specified.

22.1 \def\bbl@tempa{germanb}

22.2 \ifx\CurrentOption\bbl@tempa
22.3 \def\CurrentOption{german}
22.4 \ifx\1l@german\Qundefined
22.5 \@nopatterns{German}

22.6 \adddialect\1l@german0

15 The file described in this section has version number v2.61 and was last revised on 2008,/03/17.
16 This file is a re-implementation of Hubert Partl’s german.sty version 2.5b, see [4].

79



\captionsgerman

\captionsaustrian

\dategerman

227 \fi
22.8 \let\l@germanb\l@german
22.9  \AtBeginDocument{J,

22.10 \let\captionsgermanb\coptionsgerman
22.11 \let\dategermanb\dategerman

22.12 \let\extrasgermanb\extrasgerman
22.13 \let\noextrasgermanb\noextrasgerman
22.14 }

22.15 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

22.16 (*xcode)
22.17 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command, german
will be an ‘unknown’ language, so we have to make it known. So we check for the
existence of \1@german to see whether we have to do something here.

22.18 \ifx\1@german\@undefined
22.19  \@nopatterns{German}

22.20 \adddialect\1l@germanO
22.21 \fi

For the Austrian version of these definitions we just add another language.
22.22 \adddialect\1l@austrian\l@german

The next step consists of defining commands to switch to (and from) the Ger-
man language.

Either the macro \captionsgerman or the macro \captionsaustrian will define
all strings used in the four standard document classes provided with IXTEX.

22.23 \@namedef{captions\CurrentOption}{%

22.24  \def\prefacename{Vorwortl}J,

22.25 \def\refname{Literatur},

22.26  \def\abstractname{Zusammenfassung}/

22.27 \def\bibname{Literaturverzeichnis}/,

22.28 \def\chaptername{Kapitell}/,

22.29  \def\appendixname{Anhang}/,

22.30 \def\contentsname{Inhaltsverzeichnis}, % oder nur: Inhalt
22.31 \def\listfigurename{Abbildungsverzeichnis},
22.32 \def\listtablename{Tabellenverzeichnis}y,
22.33 \def\indexname{Index}/,

22.34 \def\figurename{Abbildung}y,

22.35 \def\tablename{Tabelle}} % oder: Tafel
22.36  \def\partname{Teil}/,

22.37 \def\enclname{Anlage(n)}% % oder: Beilage(n)
22.38 \def\ccname{Verteiler}}, % oder: Kopien an

22.39 \def\headtoname{An}/,

22.40 \def\pagename{Seitel}/,

22.41 \def\seename{siehel/,

22.42 \def\alsoname{siehe auch}y
22.43 \def\proofname{Beweis},
22.44 \def\glossaryname{Glossar}/,
22.45 }

The macro \dategerman redefines the command \today to produce German dates.

22.46 \def\month@german{\ifcase\month\or

22.47 Januar\or Februar\or M\"arz\or Aprillor Mailor Juni\or

22.48 Julilor August\or September\or Oktober\or November\or Dezember\fi}
22.49 \def\dategerman{\def\today{\number\day. \month@german

22.50 \space\number\year}}

80



\dateaustrian

\extrasgerman
\extrasaustrian
\noextrasgerman

\noextrasaustrian

The macro \dateaustrian redefines the command \today to produce Austrian
version of the German dates.

22.51 \def\dateaustrian{\def\today{\number\day.~\ifnuml=\month
22.52 J\"anner\else \month@german\fi \space\number\year}}

Either the macro \extrasgerman or the macros \extrasaustrian will per-
form all the extra definitions needed for the German language. The macro
\noextrasgerman is used to cancel the actions of \extrasgerman.
For German (as well as for Dutch) the " character is made active. This is done

once, later on its definition may vary.

22.53 \initiate@active@char{"}

22.54 \@namedef{extras\CurrentOption}{%

22.55 \languageshorthands{german}}

22.56 \expandafter\addto\csname extras\CurrentOption\endcsname{%

22.57 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
22.58 \addto\noextrasgerman{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German words which contain ‘B’
(in the OT1 position ~~Y) we have to give the character a nonzero \lccode (see
Appendix H, the TgXbook).
22.59 \expandafter\addto\csname extras\CurrentOption\endcsname{%
22.60 \babel@savevariable{\lccode25}},
22.61 \lccode25=25}
The umlaut accent macro \" is changed to lower the umlaut dots. The redefi-
nition is done with the help of \umlautlow.
22.62 \expandafter\addto\csname extras\CurrentOption\endcsname{7

22.63 \babel@save\"\umlautlow}
22.64 \@namedef{noextras\CurrentOption}{\umlauthigh}

The german hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

22.65 \providehyphenmins{\CurrentOption}{\tw@\tw@}
For German texts we need to make sure that \frenchspacing is turned on.

22.66 \expandafter\addto\csname extras\CurrentOption\endcsname{7

22.67 \bbl@frenchspacing}

22.68 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
22.69 \bbl@nonfrenchspacing}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 4.

To be able to define the function of ", we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math

accent \" can now be typed as ".

22.70 \begingroup \catcode‘\"12
22.71 \def\x{\endgroup

22.72  \def\@SS{\mathchar"7019 }
22.73  \def\dq{"}}

22.74 \x

Now we can define the doublequote macros: the umlauts,

22.75 \declare@shorthand{german}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
22.76 \declare@shorthand{german}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
22.77 \declare@shorthand{german}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
22.78 \declare@shorthand{german}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
22.79 \declare@shorthand{german}{"0}{\textormath{\"{0}\allowhyphens}{\ddot 0}}
22.80 \declare@shorthand{german}{"U}{\textormath{\"{U}allowhyphens}{\ddot U}}

81



tremas,

22.81 \declare@shorthand{german}{"e}{\textormath{\"{e}}{\ddot e}}
22.82 \declare@shorthand{german}{"E}{\textormath{\"{E}}{\ddot E}}
22.83 \declare@shorthand{german}{"i}{\textormath{\"{\1i}}%

22.84 {\ddot\imath}}

22.85 \declare@shorthand{german}{"I}{\textormath{\"{I}}{\ddot I}}

german es-zet (sharp s),

22.86 \declare@shorthand{german}{"s}{\textormath{\ss}{\@SS{}}}
22.87 \declare@shorthand{german}{"S}{\SS}
22.88 \declare@shorthand{german}{"z}{\textormath{\ss}{\@Ss{}}}
22.89 \declare@shorthand{german}{"Z}{SZ}

german and french quotes,

22.90 \declare@shorthand{german}{" ‘}{\glqq}
22.91 \declare@shorthand{german}{"’}{\graq}
22.92 \declare@shorthand{german}{"<}{\flqq}
22.93 \declare@shorthand{german}{">}{\frqq}

discretionary commands

22.94 \declare@shorthand{german}{"c}{\textormath{\bbl@disc ck}{c}}

22.95 \declare@shorthand{german}{"C}{\textormath{\bbl@disc CK}{C}}

22.96 \declare@shorthand{german}{"F}{\textormath{\bbl@disc F{FF}}{F}}
22.97 \declare@shorthand{german}{"1}{\textormath{\bbl@disc 1{11}}{1}}
22.98 \declare@shorthand{german}{"L}{\textormath{\bbl@disc L{LL}}{L}}
22.99 \declare@shorthand{german}{"m}{\textormath{\bbl@disc m{mm}}{m}}
22.100 \declare@shorthand{german}{"M}{\textormath{\bbl@disc M{MM}}{M}}
22.101 \declare@shorthand{german}{"n}{\textormath{\bbl@disc n{nn}}{n}}
22.102 \declare@shorthand{german}{"N}{\textormath{\bbl@disc N{NN}}{N}}
22.103 \declare@shorthand{german}{"p}{\textormath{\bbl@disc p{pp}}{p}}
22.104 \declare@shorthand{german}{"P}{\textormath{\bbl@disc P{PP}}{P}}
22.105 \declare@shorthand{german}{"r}{\textormath{\bbl@disc r{rr}}{r}}
22.106 \declare@shorthand{german}{"R}{\textormath{\bbl@disc R{RR}}{R}}
22.107 \declare@shorthand{german}{"t}{\textormath{\bbl@disc t{tt}}{t}}
22.108 \declare@shorthand{german}{"T}{\textormath{\bbl@disc T{TT}}{T}}

We need to treat "f a bit differently in order to preserve the ff-ligature.

22.109 \declare@shorthand{german}{"f}{\textormath{\bbl@discff}{£f}}
22.110 \def\bbl@discff{\penalty\QM
22.111 \afterassignment\bbl@insertff \let\bbl@nextff= }
22.112 \def\bbl@insertff{},
22.113  \if f\bbl@nextff
22.114 \expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi
22.115  {\relax\discretionary{ff-}{f}{ff}\allowhyphens}{f\bbl@nextff}}
22.116 \let\bbl@nextff=f

and some additional commands:
22.117 \declare@shorthand{german}{"-}{\nobreak\-\bbl@allowhyphens}
22.118 \declare@shorthand{german}{" | }{%
22.119  \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%
22.120 \allowhyphens}{}}
22.121 \declare@shorthand{german}{""}{\hskip\z@skip}
22.122 \declare@shorthand{german}{"~“}{\textormath{\leavevmode\hbox{-}}{-}}
22.123 \declare@shorthand{german}{"=}{\penalty\@M-\hskip\z@skip}

\mdgon All that’s left to do now is to define a couple of commands for reasons of compat-
\mdqoff ibility with german.sty.
\ck22.124 \def\mdqon{\shorthandon{"}}
22.125 \def\mdqoff{\shorthandoff{"}}
22.126 \def\ck{\allowhyphens\discretionary{k-}{k}{ck}\allowhyphens}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

82



22.127 \1df@f inish\CurrentOption
22.128 (/code)

83



\captionsngerman

\captionsnaustrian

23 The German language — new orthography

The file ngermanb.dtx'” defines all the language definition macros for the German
language with the ‘new orthography’ introduced in August 1998. This includes
also the Austrian dialect of this language.

As with the ‘traditional’ German orthography, the character " is made active,
and the commands in table 4 can be used, except for "ck and "ff etc., which are
no longer required.

The internal language names are ngerman and naustrian.

When this file was read through the option ngermanb we make it behave as if
ngerman was specified.

23.1 \def\bbl@tempa{ngermanb}

23.2 \ifx\CurrentOption\bbl@tempa
23.3 \def\CurrentOption{ngerman}
23.4 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

23.5 (*code)
23.6 \Ldf Init\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command, ngerman
will be an ‘unknown’ language, so we have to make it known. So we check for the
existence of \1@ngerman to see whether we have to do something here.

23.7 \ifx\1lOngerman\Qundefined
23.8 \@nopatterns{ngerman}

23.9 \adddialect\l@ngermanO
23.10 \fi

For the Austrian version of these definitions we just add another language.
23.11 \adddialect\1l@naustrian\1l@ngerman

The next step consists of defining commands to switch to (and from) the Ger-
man language.

Either the macro \captionnsgerman or the macro \captionsnaustrian will de-
fine all strings used in the four standard document classes provided with IATEX.

23.12 \@namedef{captions\CurrentOption}{%

23.13 \def\prefacename{Vorwort}y,

23.14  \def\refname{Literatur},

23.15 \def\abstractname{Zusammenfassung}/,

23.16  \def\bibname{Literaturverzeichnis}%

23.17  \def\chaptername{Kapitell}y,

23.18 \def\appendixname{Anhang}/,

23.19 \def\contentsname{Inhaltsverzeichnis}}, % oder nur: Inhalt
23.20 \def\listfigurename{Abbildungsverzeichnis}/
23.21 \def\listtablename{Tabellenverzeichnis},
23.22 \def\indexname{Index}%

23.23 \def\figurename{Abbildung}’

23.24 \def\tablename{Tabellel}’ % oder: Tafel
23.25 \def\partname{Teill}),

23.26  \def\enclname{Anlage(n)}’ % oder: Beilage(n)
23.27 \def\ccname{Verteiler}, % oder: Kopien an

23.28 \def\headtoname{An}%

23.29  \def\pagename{Seitel}

23.30 \def\seename{siehel},

23.31 \def\alsoname{siehe auch}y,
23.32  \def\proofname{Beweis}}
23.33 \def\glossaryname{Glossarl},
23.34 1}

17The file described in this section has version number v2.6m and was last revised on
2008,/03/17.

84



\datengerman

\dateanustrian

\extrasngerman

\extrasnaustrian
\noextrasngerman
\noextrasnaustrian

\dq

The macro \datengerman redefines the command \today to produce German
dates.
23.35 \def \month@ngerman{\ifcase\month\or
23.36  Januar\or Februar\or M\"arz\or Aprillor Mailor Juni\or
23.37  Julilor August\or September\or Oktober\or November\or Dezember\fi}
23.38 \def\datengerman{\def\today{\number\day. ~\month@ngerman
23.39 \space\number\year}}

The macro \datenaustrian redefines the command \today to produce Austrian
version of the German dates.

23.40 \def\datenaustrian{\def\today{\number\day. “\ifnumi=\month
23.41 J\"anner\else \month@ngerman\fi \space\number\year}}

Either the macro \extrasngerman or the macros \extrasnaustrian will per-
form all the extra definitions needed for the German language. The macro
\noextrasngerman is used to cancel the actions of \extrasngerman.
For German (as well as for Dutch) the " character is made active. This is done

once, later on its definition may vary.

23.42 \initiate@active@char{"}

23.43 \@namedef{extras\CurrentOption}{/

23.44 \languageshorthands{ngerman}}

23.45 \expandafter\addto\csname extras\CurrentOption\endcsname{7

23.46 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
23.47 \addto\noextrasngerman{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German words which contain ‘B’
(in the OT1 position ~~Y) we have to give the character a nonzero \lccode (see
Appendix H, the TgXbook).
23.48 \expandafter\addto\csname extras\CurrentOption\endcsname{7

23.49 \babel@savevariable{\lccode25},
23.50 \lccode25=25}

The umlaut accent macro \" is changed to lower the umlaut dots. The redefi-
nition is done with the help of \umlautlow.
23.51 \expandafter\addto\csname extras\CurrentOption\endcsname{%
23.52 \babel@save\"\umlautlow}
23.53 \@namedef{noextras\CurrentOption}{\umlauthigh}

The current version of the ‘new’ German hyphenation patterns (dehyphn.tex is
to be used with \lefthyphenmin and \righthyphenmin set to 2.

23.54 \providehyphenmins{\CurrentOption}{\tw@\tw@}
For German texts we need to make sure that \frenchspacing is turned on.

23.55 \expandafter\addto\csname extras\CurrentOption\endcsname{’,

23.56  \bbl@frenchspacing}

23.57 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
23.58 \bbl@nonfrenchspacing}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 4.

To be able to define the function of ", we first define a couple of ‘support’
macros.

We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

23.59 \begingroup \catcode‘\"12

23.60 \def\x{\endgroup

23.61 \def\@SS{\mathchar"7019 }

23.62 \def\dq{"}}

23.63 \x

85



\mdgon
\mdqoff

Now we can define the doublequote macros: the umlauts,

23.64 \declare@shorthand{ngerman}{"a}{\textormath{\"{a}\allowhyphens}{\ddot al}}
23.65 \declare@shorthand{ngerman}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
23.66 \declare@shorthand{ngerman}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
23.67 \declare@shorthand{ngerman}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
23.68 \declare@shorthand{ngerman}{"0}{\textormath{\"{0}\allowhyphens}{\ddot 0}}
23.69 \declare@shorthand{ngerman}{"U}\textormath{\"{U} allowhyphens}{\ddot U}}

tremas,

23.70 \declare@shorthand{ngerman}{"e}{\textormath{\"{e}}{\ddot e}}
23.71 \declare@shorthand{ngerman}{"E}{\textormath{\"{E}}{\ddot E}}
23.72 \declare@shorthand{ngerman}{"i}{\textormath{\"{\i}}%

23.73 {\ddot\imath}}

23.74 \declare@shorthand{ngerman}{ "I} \textormath{\"{I}}{\ddot I}}

german es-zet (sharp s),
23.75 \declare@shorthand{ngerman}{"s}{\textormath{\ss}{\@SS{}}}
23.76 \declare@shorthand{ngerman}{"S}{\SS}

23.77 \declare@shorthand{ngerman}{"z}{\textormath{\ss}{\@SS{}}}
23.78 \declare@shorthand{ngerman}{"Z}{SZ}

german and french quotes,
23.79 \declare@shorthand{ngerman}{" ‘}{\glqq}
23.80 \declare@shorthand{ngerman}{"’}{\grqq}

23.81 \declare@shorthand{ngerman}{"<}{\flqq}
23.82 \declare@shorthand{ngerman}{">}{\frqq}
and some additional commands:
23.83 \declare@shorthand{ngerman}{"-}{\nobreak\-\bbl@allowhyphens}
23.84 \declare@shorthand{ngerman}{" | }{/
23.85 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}/
23.86 \allowhyphens}{}}
23.87 \declare@shorthand{ngerman}{""}{\hskip\z@skip}
23.88 \declare@shorthand{ngerman}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
23.89 \declare@shorthand{ngerman}{"=}{\penalty\@M-\hskip\z@skip}

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with german.sty.

23.90 \def\mdgon{\shorthandon{"}}

23.91 \def\mdqoff{\shorthandoff{"}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

23.92 \1df@finish\CurrentOption
23.93 (/code)

86



\captionsbreton

\datebreton

24 The Breton language

The file breton.dtx'® defines all the language-specific macros for the Breton lan-
guage.

There are not really typographic rules for the Breton language. It is a local
language (it’s one of the celtic languages) which is spoken in Brittany (West of
France). So we have a synthesis between french typographic rules and english
typographic rules. The characters :, ;, ! and ? are made active in order to get a
whitespace automatically before these characters.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

24.1 (*code)
24.2 \LdfInit{breton}\captionsbreton

When this file is read as an option, i.e. by the \usepackage command, breton
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@breton to see whether we have to do something here.

24.3 \ifx\1@breton\@undefined
24.4 \@nopatterns{Breton}
24.5 \adddialect\1@bretonO\fi

The next step consists of defining commands to switch to the English language.
The reason for this is that a user might want to switch back and forth between
languages.

The macro \captionsbreton defines all strings used in the four standard docu-
ment classes provided with TEX.

24.6 \addto\captionsbreton{
24.7  \def\prefacename{Rakskridl}
24.8 \def\refname{Daveenno\ ‘u}}
24.9 \def\abstractname{Dvierra\~n}/,
24.10 \def\bibname{Lennadurezhl}y,
24.11 \def\chaptername{Pennad}/,
24.12  \def\appendixname{Stagadenn},
24.13 \def\contentsname{Taolenn},
24.14 \def\listfigurename{Listenn ar Figurenno\‘ul/,
24.15 \def\listtablename{Listenn an taolenno\‘ul}’
24.16  \def\indexname{Menegerl,
24.17 \def\figurename{Figurenn}y,
24.18 \def\tablename{Taolenn},
24.19  \def\partname{Lodenn},
24.20 \def\enclname{Diello\‘u kevret}}
24.21 \def\ccname{Eilskrid dal}’
24.22  \def\headtoname{evit}
24.23 \def\pagename{Pajenn}/,
24.24  \def\seename{Gwelout},
24.25 \def\alsoname{Gwelout ivezl}%
24.26  \def\proofname{Proof}), <-- needs translation
24.27 \def\glossaryname{Glossaryl}), <-- Needs translation
24.28 }

The macro \datebreton redefines the command \today to produce Breton dates.

24.29 \def\datebreton{’
24.30 \def\today{\ifnum\day=1\relax 1\/$~{\rm a\tilde{n}}$\else

24.31 \number\day\fi \space a\space viz\space\ifcase\month\or

24.32 Genver\or C’hwevrer\or Meurzh\or Ebrel\or Mae\or Mezheven\or
24.33 Gouere\or Eost\or Gwengolo\or Here\or Dulor Kerzu\fi

24.34 \space\number\year}}

18The file described in this section has version number v1.0h and was last revised on
2005/03/29.

87



\extrasbreton

\noextrasbreton

\breton@sh@;@

\breton@sh@: @
\breton@sh@!@

The macro \extrasbreton will perform all the extra definitions needed for the
Breton language. The macro \noextrasbreton is used to cancel the actions of
\extrasbreton.
The category code of the characters :, ;, ! and 7 is made \active to insert

a little white space.

24.35 \initiate@active@char{:}

24.36 \initiate@active@char{;}

24.37 \initiate@active@char{!}

24.38 \initiate@active@char{?}

We specify that the breton group of shorthands should be used.
24.39 \addto\extrasbreton{\languageshorthands{breton}}
These characters are ‘turned on’ once, later their definition may vary.

24.40 \addto\extrasbreton{/,

24.41 \bbl@activate{:}\bbl@activate{;}%

24.42 \bbl@activate{!}\bbl@activate{?}}
Don’t forget to turn the shorthands off again.

24.43 \addto\noextrasbreton{’

24.44 \bbl@deactivate{:}\bbl@deactivated{;}%

24.45 \bbl@deactivate{!}\bbl@deactivate{?}}

The last thing \extrasbreton needs to do is to make sure that \frenchspacing
is in effect. If this is not the case the execution of \noextrasbreton will switch
it of again.

24.46 \addto\extrasbreton{\bbl@frenchspacing}
24.47 \addto\noextrasbreton{\bbl@nonfrenchspacing}

We have to reduce the amount of white space before ;, : and ! when the user types
a space in front of these characters. This should only happen outside mathmode,
hence the test with \ifmmode.

24.48 \declare@shorthand{breton}{; }{%

24.49 \ifmmode
24.50 \string;\space
24.51 \else\relax

In horizontal mode we check for the presence of a ‘space’ and replace it by a
\thinspace.

24.52 \ifhmode

24.53 \ifdim\lastskip>\z@

24.54 \unskip\penalty\@M\thinspace
24.55 \fi

24.56 \fi

24.57 \string;\space

24.58 \£i}%

Because these definitions are very similar only one is displayed in a way that the
definition can be easily checked.

24.59 \declare@shorthand{breton}{:}{/

24.60 \ifmmode\string:\space

24.61 \else\relax

24.62 \ifhmode

24.63 \ifdim\lastskip>\z@\unskip\penalty\@M\thinspace\fi
24.64 \fi

24.65 \string:\space

24.66 \fi}

24.67 \declare@shorthand{breton}{!}{%
24.68 \ifmmode\string!\space
24.69 \else\relax

24.70 \ifhmode
24.71 \ifdim\lastskip>\z@\unskip\penalty\@M\thinspace\fi
24.72 \fi

88



\breton@sh@?7@

24.73 \string!\space
24.74  \fi}

For the question mark something different has to be done. In this case the amount
of white space that replaces the space character depends on the dimensions of the
font.

24.75 \declare@shorthand{breton}{?}{’%
24.76  \ifmmode

24.77 \string?\space

24.78 \else\relax

24.79 \ifhmode

24.80 \ifdim\lastskip>\z@
24.81 \unskip

24.82 \kern\fontdimen2\font
24.83 \kern-1.4\fontdimen3\font
24.84 \fi

24.85 \fi

24.86 \string?\space

24.87 \fi}

All that is left to do now is provide the breton user with some extra utilities.
Some definitions for special characters.

24.88 \DeclareTextSymbol{\at}{0T1}{64}
24.89 \DeclareTextSymbol{\at}{T1}{64}
24.90 \DeclareTextSymbolDefault{\at}{0T1}
24.91 \DeclareTextSymbol{\boi}{0T1}{92}
24.92 \DeclareTextSymbol{\boi}{T1}{16}
24.93 \DeclareTextSymbolDefault{\boi}{0T1}
24.94 \DeclareTextSymbol{\circonflexe}{0T1}{94}
24.95 \DeclareTextSymbol{\circonflexe}{T1}{2}
24.96 \DeclareTextSymbolDefault{\circonflexe}{0T1}
24.97 \DeclareTextSymbol{\tild}{0T1}{126}
24.98 \DeclareTextSymbol{\tild}{T1}{3}
24.99 \DeclareTextSymbolDefault{\tild}{0T1}
24.100 \DeclareTextSymbol{\degre}{0T1}{23}
24.101 \DeclareTextSymbol{\degre}{T1}{6}
24.102 \DeclareTextSymbolDefault{\degre}{0T1}

The following macros are used in the redefinition of \~ and \" to handle the
letter i.

24.103 \AtBeginDocument{Y
24.104 \DeclareTextCompositeCommand{\~}{0T1}{i}{\"\i}
24.105 \DeclareTextCompositeCommand{\"}{OT1}{i}{\"\i}}

And some more macros for numbering.
24.106 \def\kentan{1\/${}~{\rm a\tilde{n}}$}
24.107 \def\eil{2\/${}~{\rm 1}$}

24.108 \def\re{\/${}~{\rm re}$}
24.109 \def\trede{3\re}

24.110 \def\pevare{4\re}

24.111 \def\vet{\/${}~{\rm vet}$}
24.112 \def \pempvet{5\vet}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

24.113 \1df@finish{breton}
24.114 (/code)

89



\welshhyphenmins

\captionswelsh

\datewelsh

25 The Welsh language

The file welsh.dtx'? defines all the language definition macros for the Welsh
language.

For this language currently no special definitions are needed or available.

The macro \1df@init takes care of preventing that this file is loaded more
than once, checking the category code of the @ sign, etc.

25.1 (*xcode)
25.2 \LdfInit{welsh}{captionswelsh}

When this file is read as an option, i.e. by the \usepackage command, welsh
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@welsh to see whether we have to do something here.

25.3 \ifx\undefined\1@welsh
25.4 \@nopatterns{welsh}
25.5 \adddialect\1l@welshO\fi

The next step consists of defining commands to switch to (and from) the Welsh
language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

25.6 \providehyphenmins{\CurrentOption}{\tw@\three}

The macro \captionswelsh defines all strings used in the four standard docu-
mentclasses provided with IATEX.

25.7 \def\captionswelsh{},
25.8 \def\prefacename{Rhagair}j,
25.9 \def\refname{Cyfeiriadau}’
25.10 \def\abstractname{Crynodebl}/
25.11 \def\bibname{Llyfryddiaethl}%
25.12 \def\chaptername{Pennod}/
25.13  \def\appendixname{Atodiad}/,
25.14  \def\contentsname{Cynnwys}/,
25.15 \def\listfigurename{Rhestr Ddarluniaul’,
25.16 \def\listtablename{Rhestr Dablaul/,
25.17  \def\indexname{Mynegailj,
25.18 \def\figurename{Darlun}/,
25.19 \def\tablename{Taflenl}’
25.20 \def\partname{Rhan},
25.21 \def\enclname{amgae\"edig}’
25.22  \def\ccname{cop\"\i aul/,
25.23 \def\headtoname{At}), % ‘at’ on letters meaning ‘to ( a person)’
25.24 % ‘to (a place)’ is ‘i’ in Welsh
25.25  \def\pagename{tudalen}/
25.26  \def\seename{gwelerl}/,
25.27 \def\alsoname{gweler hefyd}J,
25.28 \def\proofname{Prawf}’
25.29 \def\glossaryname{Rhestr termaul},
25.30  }

The macro \datewelsh redefines the command \today to produce welsh dates.

25.31 \def\datewelsh{’
25.32  \def\today{\ifnum\day=1\relax 1\/$~{\mathrm{a\tilde{n}}}$\else

25.33 \number\day\fi\space\ifcase\month\or
25.34 Ionawr\or Chwefror\or Mawrth\or Ebrill\or
25.35 Mailor Mehefin\or Gorffennaf\or Awst\or

25.36 Medi\or Hydref\or Tachwedd\or Rhagfyr\fi
25.37  \space\number\year}}

19The file described in this section has version number v1.0d and was last revised on
2005/03/31.

90



\extraswelsh

\noextraswelsh

The macro \extraswelsh will perform all the extra definitions needed for the
welsh language. The macro \noextraswelsh is used to cancel the actions of
\extraswelsh. For the moment these macros are empty but they are defined for
compatibility with the other language definition files.

25.38 \addto\extraswelsh{}
25.39 \addto\noextraswelsh{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

25.40 \1df@finish{welsh}
25.41 (/code)

91



\irishhyphenmins

\captionsirish

\dateirish

26 The Irish language

The file irish.dtx?" defines all the language definition macros for the Irish lan-
guage.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

26.1 (*code)
26.2 \LdfInit{irish}\captionsirish

When this file is read as an option, i.e. by the \usepackage command, irish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@irish to see whether we have to do something here.

26.3 \ifx\1@irish\@undefined
26.4 \@nopatterns{irish}
26.5 \adddialect\1@irishO\fi

The next step consists of defining commands to switch to (and from) the Irish
language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

26.6 \providehyphenmins{\CurrentOption}{\tw@\throe}

The macro \captionsirish defines all strings used in the four standard docu-
mentclasses provided with IATEX.

26.7 \addto\captionsirish{’
26.8 \def\prefacename{R\’eamhr\’aly, <-- also "Brollach"
26.9 \def\refname{Tagairt\’{\i}}%
26.10 \def\abstractname{Achoimrel},
26.11  \def\bibname{Leabharliostaly
26.12 \def\chaptername{Caibidil}},
26.13  \def\appendixname{Aguis\’{\i}n}/
26.14 \def\contentsname{Cl\’ar \’Abhair}j
26.15 \def\listfigurename{L\’ear\’aid\’{\i}}%
26.16 \def\listtablename{T\’abla\’{\i}}/,
26.17  \def\indexname{Inn\’eacs}’
26.18 \def\figurename{L\’ear\’aid}%
26.19 \def\tablename{T\’ablal,
26.20 \def\partname{Cuidl}’
26.21 \def\enclname{faoi iamh},
26.22  \def\ccname{cc}’ abrv. ‘c\’oip chuig’
26.23  \def\headtoname{Gol}%
26.24 \def\pagename{Leathanach}y,
26.25 \def\seename{f\’eachl},
26.26  \def\alsoname{f\’each freisin}j,
26.27 \def\proofname{Cruth\’unas}/,
26.28 \def\glossaryname{Glossaryl}), <-- Needs translation
26.29 }

The macro \dateirish redefines the command \today to produce Irish dates.

26.30 \def\dateirish{’
26.31 \def\today{%

26.32 \number\day\space \ifcase\month\or
26.33 Ean\’air\or Feabhralor M\’artalor Aibre\’an\or
26.34 Bealtaine\or Meitheamh\or I\’uillor L\’unasa\or

26.35 Me\’an F\’omhair\or Deireadh F\’omhair\or
26.36 M\’{\i} na Samhnalor M\’{\i} na Nollag\fi
26.37 \space \number\yearl}}

20The file described in this section has version number v1.0h and was last revised on
2005/03/30. A contribution was made by Marion Gunn.

92



\extrasirish

\noextrasirish

The macro \extrasirish will perform all the extra definitions needed for the
Irish language. The macro \noextrasirish is used to cancel the actions of
\extrasirish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

26.38 \addto\extrasirish{}
26.39 \addto\noextrasirish{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

26.40 \1df@finish{irish}
26.41 (/code)

93



\captionsscottish

\datescottish

\extrasscottish

\noextrasscottish

27 The Scottish language

The file scottish.dtx?! defines all the language definition macros for the Scottish
language.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

27.1 (xcode)
27.2 \LdfInit{scottish}\captionsscottish

When this file is read as an option, i.e. by the \usepackage command,
scottish could be an ‘unknown’ language in which case we have to make it
known. So we check for the existence of \1@scottish to see whether we have to
do something here.

27.3 \ifx\1@scottish\@undefined
27.4 \@nopatterns{scottish}
27.5 \adddialect\1l@scottishO\fi

The next step consists of defining commands to switch to (and from) the Scottish
language.

The macro \captionsscottish defines all strings used in the four standard doc-
umentclasses provided with BTEX.

27.6 \addto\captionsscottish{’,

277  \def\prefacename{Prefacel}, <-- needs translation
27.8  \def\refname{Iomraidh},

27.9 \def\abstractname{Br\‘{\i}ghl}V

27.10  \def\bibname{Leabhraichean},

27.11  \def\chaptername{Caibideill}},

27.12  \def\appendixname{Ath-sgr‘{\i}obhadh},
27.13  \def\contentsname{Cl\‘ar-obrach}/,

27.14 \def\listfigurename{Liosta Dhealbh 1}J
27.15 \def\listtablename{Liosta Chl\‘ar}}
27.16  \def\indexname{Cl\‘ar-innse}/

27.17  \def\figurename{Dealbh}’

27.18  \def\tablename{Cl\‘ar}y,

27.19  \def\partname{Cuid}%

27.20 \def\enclname{a-staigh}’

27.21  \def\ccname{lethbhreac gul/,

27.22  \def\headtoname{gul}%

27.23  \def\pagename{t.d.}/ abrv. ‘taobh duilleag’
27.24  \def\seename{seel}/ <-- needs translation

27.25 \def\alsoname{see alsol}/, <-- needs translation

27.26  \def\proofname{Proof}’ <-- needs translation

27.27 \def\glossaryname{Glossaryl}/) <-- Needs translation
27.28 }

The macro \datescottish redefines the command \today to produce Scottish
dates.

27.29 \def\datescottish{%
27.30  \def\today{%

27.31 \number\day\space \ifcase\month\or

27.32 am Faoilteach\or an Gearran\or am M\‘art\or an Giblean\or
27.33 an C\‘eitean\or an t-\‘Og mhios\or an t-Iuchar\or

27.34 L\‘unasdal\or an Sultuine\or an D\‘amhar\or

27.35 an t-Samhainn\or an Dubhlachd\fi

27.36 \space \number\yearl}}

The macro \extrasscottish will perform all the extra definitions needed for the
Scottish language. The macro \noextrasscottish is used to cancel the actions of

21The file described in this section has version number v1.0g and was last revised on
2005/03/31. A contribution was made by Fraser Grant (FRASERQCERNVM).

94



\extrasscottish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

27.37 \addto\extrasscottish{}
27.38 \addto\noextrasscottish{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

27.39 \1df@finish{scottish}
27.40 (/code)

95



\greektext
\latintext
\textgreek
\textlatin

\textol

28 The Greek language

The file greek.dtx?? defines all the language definition macros for the Greek
language, i.e., as it used today with only one accent, and the attribute moAvTovké
(“Polutoniko”) for typesetting greek text with all accents. This separation arose
out of the need to simplify things, for only very few people will be really interested
to typeset polytonic Greek text.

The commands \greektext and \latintext can be used to switch to greek
or latin fonts. These are declarations.

The commands \textgreek and \textlatin both take one argument which is
then typeset using the requested font encoding. The command \greekol switches
to the greek outline font family, while the command \textol typests a short text
in outline font. A number of extra greek characters are made available through the
added text commands \stigma, \qoppa, \sampi, \ddigamma, \Digamma, \euro,
\permill, and \vardigamma.

28.1 Typing conventions

Entering greek text can be quite difficult because of the many diacritical signs that
need to be added for various purposes. The fonts that are used to typeset Greek
make this a lot easier by offering a lot of ligatures. But in order for this to work,
some characters need to be considered as letters. These characters are <, >, =, ¢,
> " and |. Therefore their \1ccode is changed when Greek is in effect. In order
to let \uppercase give correct results, the \uccode of these characters is set to a
non-existing character to make them disappear. Of course not all characters are
needed when typesetting “modern” povoroviké. In that case we only need the 2
and " symbols which are treated in the proper way.

28.2 Greek numbering

The Greek alphabetical numbering system, like the Roman one, is still used in
everyday life for short enumerations. Unfortunately most Greeks don’t know how
to write Greek numbers bigger than 20 or 30. Nevertheless, in official editions of
the last century and beginning of this century this numbering system was also used
for dates and numbers in the range of several thousands. Nowadays this numbering
system is primary used by the Eastern Orthodox Church and by certain scholars.
It is hence necessary to be able to typeset any Greek numeral up to 999 999. Here
are the conventions:

e There is no Greek numeral for any number less than or equal to 0.

e Numbers from 1 to 9 are denoted by letters alpha, beta, gamma, delta,
epsilon, stigma, zeta, eta, theta, followed by a mark similar to the math-
ematical symbol “prime”. (Nowadays instead of letter stigma the digraph
sigma tau is used for number 6. Mainly because the letter stigma is not
always available, so people opt to write down the first two letters of its name
as an alternative. In our implementation we produce the letter stigma, not
the digraph sigma tau.)

e Decades from 10 to 90 are denoted by letters iota, kappa, lambda, mu, nu,
xi, omikron, pi, qoppa, again followed by the numeric mark. The qoppa used
for this purpose has a special zig-zag form, which doesn’t resemble at all the
original ‘q’-like qoppa.

e Hundreds from 100 to 900 are denoted by letters rho, sigma, tau, upsilon,
phi, chi, psi, omega, sampi, followed by the numeric mark.

22The file described in this section has version number v1.31 and was last revised on
2005/03/30. The original author is Apostolos Syropoulos (apostolo@platon.ee.duth.gr), code
from kdgreek.sty by David Kastrup dak@neuroinformatik.ruhr-uni-bochum.de was used to
enhance the support for typesetting greek texts.

96



\greeknumeral

\Greeknumeral

e Any number between 1 and 999 is obtained by a group of letters denoting
the hundreds decades and units, followed by a numeric mark.

e To denote thousands one uses the same method, but this time the mark is
placed in front of the letter, and under the baseline (it is inverted by 180
degrees). When a group of letters denoting thousands is followed by a group
of letters denoting a number under 1000, then both marks are used.

Using these conventions one obtains numbers up to 999999. The command
\greeknumeral makes it possible to typeset Greek numerals. There is also an
“uppercase” version of this macro: \Greeknumeral.

Another system which was in wide use only in Athens, could express any
positive number. This system is implemented in package athnum.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

28.1 (xcode)

28.2 \LdfInit\CurrentOption{captions\CurrentOption}

When the option polutonikogreek was used, redefine \CurrentOption to prevent
problems later on.

28.3 \gdef\CurrentOption{greekl}%

When this file is read as an option, i.e. by the \usepackage command, greek
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@greek to see whether we have to do something here.

28.4 \ifx\1l@greek\Qundefined
28.5 \@nopatterns{greek}
28.6 \adddialect\l@greekO\fi

Now we declare the polutoniko language attribute.
28.7 \bbl@declare@ttribute{greek}{polutoniko}{’

This code adds the expansion of \extraspolutonikogreek to \extrasgreek and
changes the definition of \today for Greek to produce polytonic month names.

28.8 \expandafter\addto\expandafter\extrasgreek
28.9 \expandafter{\extraspolutonikogreek}
28.10 \let\captionsgreek\captionspolutonikogreek
28.11  \let\gr@month\gr@c@month

We need to take some extra precautions in order not to break older documents
which still use the old polutonikogreek option.

28.12 \let\l@polutonikogreek\l@greek

28.13 \let\datepolutonikogreek\dategreek

28.14 \let\extraspolutonikogreek\extrasgreek

28.15 \let\noextraspolutonikogreek\noextrasgreek

28.16 }

Typesetting Greek texts implies that a special set of fonts needs to be used.

The current support for greek uses the cb fonts created by Claudio Beccari?®.
The cb fonts provide all sorts of font combinations. In order to use these fonts we
define the Local GReek encoding (LGR, see the file greek.fdd). We make sure

that this encoding is known to EXTEX, and if it isn’t we abort.
28.17 \InputIfFileExists{lgrenc.def}{’
28.18 \message{Loading the definitions for the Greek font encodingl}}{J
28.19  \errhelp{I can’t find the lgrenc.def file for the Greek fonts}/
28.20 \errmessage{Since I do not know what the LGR encoding means~~J

28.21 I can’t typeset Greek.""J
28.22 I stop here, while you get a suitable lgrenc.def file}\@@end
28.23 }

Now we define two commands that offer the possibility to switch between Greek
and Roman encodings.

23 Apostolos Syropoulos wishes to thank him for his patience, collaboration, cooments and
suggestions.

97



\greektext The command \greektext will switch from Latin font encoding to the Greek font
encoding. This assumes that the ‘normal’ font encoding is a Latin one. This
command is a declaration, for shorter pieces of text the command \textgreek
should be used.

28.24 \DeclareRobustCommand{\greektext}{%
28.25 \fontencoding{LGR}\selectfont
28.26  \def\encodingdefault{LGR}}

\textgreek This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

28.27 \DeclareRobustCommand{\textgreek} [1]{\leavevmode{\greektext #1}}

\textol A last aspect of the set of fonts provided with this version of support for typesetting
Greek texts is that it contains an outline family. In order to make it available we
define the command \textol.

28.28 \def\outlfamily{\usefont{LGR}{cmro}{m}{n}}
28.29 \DeclareTextFontCommand{\textol}{\outlfamily}

The next step consists in defining commands to switch to (and from) the Greek
language.

\greekhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

28.30 %, Yannis Haralambous has suggested this value
28.31 \providehyphenmins{\CurrentOption}{\@ne\@ne}

\captionsgreek The macro \captionsgreek defines all strings used in the four standard document
classes provided with BTEX.

28.32 \addto\captionsgreek{’

28.33  \def\prefacename{Pr’ologos}/,
28.34 \def\refname{Anafor’es},

28.35 \def\abstractname{Per’ilhyh},
28.36  \def\bibname{Bibliograf’ial}}
28.37 \def\chaptername{Kef’alaiol}/,
28.38  \def\appendixname{Par’arthmal},
28.39 \def\contentsname{Perieq’omenal}’,
28.40 \def\listfigurename{Kat’alogos Sqghm’atwnl}’,
28.41 \def\listtablename{Kat’alogos Pin’akwn},
28.42 \def\indexname{Euret’hrio}}

28.43 \def\figurename{Sq’hma}’

28.44 \def\tablename{P’inakas}/,

28.45 \def\partname{M’eros}’%

28.46  \def\enclname{Sunhmm’enaly,

28.47 \def\ccname{Koinopo’ihsh}/,

28.48 \def\headtoname{Pros}

28.49  \def\pagename{Sel’idal/

28.50 \def\seename{bl’epel}’

28.51 \def\alsoname{bl’epe ep’ishs},
28.52  \def\proofname{Ap’odeixh}y

28.53 \def\glossaryname{Glwss’aril}/,
28.54 }

\captionspolutonikogreek For texts written in the molvrTovkd (polytonic greek) the translations are the
same as above, but some words are spelled differently. For now we just add extra
definitions to \captionsgreek in order to override the earlier definitions.

28.55 \let\captionspolutonikogreek\captionsgreek
28.56 \addto\captionspolutonikogreek{’

28.57 \def\refname{>Anafor‘es}’,

28.58 \def\indexname{E<uret’hriol}’

98



\grémonth
\dategreek

\gr@cOgreek

\Grtoday

\extrasgreek

\noextrasgreek

\gr@ill@value

\anw@true

\anw@false
\anw@print

\greeknumeral

28.59 \def\figurename{Sq~hmal}’

28.60 \def\headtoname{Pr‘os},

28.61 \def\alsoname{bl’epe >ep’ishs}}
28.62 \def\proofname{>Ap’odeixh},
28.63 }

The macro \dategreek redefines the command \today to produce greek dates.
The name of the month is now produced by the macro \gr@month since it is needed
in the definition of the macro \Grtoday.

28.64 \def\gr@month{%
28.65 \ifcase\month\or

28.66 Ianouar’ioul\or Febrouar’ioulor Mart’ioulor April’iou\or
28.67 Ma’"iou\or Ioun’ioulor Ioul’ioulor Augo’ustoulor
28.68 Septembr’ioul\or Oktwbr’iou\or Noembr’ioulor Dekembr’iou\fi}

28.69 \def\dategreek{},
28.70  \def\today{\number\day \space \gr@month\space \number\year}}

28.71 \def\gr@c@month{y
28.72 \ifcase\month\or >Ianouar’iou\or

28.73 Febrouar’iou\or Mart’ioul\or >April’ioulor Ma"’iou\or
28.74 >Ioun’ioul\or >Ioul’ioulor A>ugo’ustoulor Septembr’iou\or
28.75 >0ktwbr’iou\or Noembr’iou\or Dekembr’iou\fi}
The macro \Grtoday produces the current date, only that the month and the day

are shown as greek numerals instead of arabic as it is usually the case.
28.76 \def\Grtoday{’,
28.77  \expandafter\Greeknumeral\expandafter{\the\day}\space
28.78  \gr@c@month \space
28.79  \expandafter\Greeknumeral\expandafter{\the\yearl}}

The macro \extrasgreek will perform all the extra definitions needed for the
Greek language. The macro \noextrasgreek is used to cancel the actions of
\extrasgreek. For the moment these macros switch the fontencoding used and
the definition of the internal macros \@alph and \@Alph because in Greek we do
use the Greek numerals.

28.80 \addto\extrasgreek{\greektext}
28.81 \addto\noextrasgreek{\latintext}

When the argument of \greeknumeral has a value outside of the acceptable
bounds (0 < z < 999999) a warning will be issued (and nothing will be printed).

28.82 \def\gr@ill@value#1{%
28.83  \PackageWarning{babel}{Illegal value (#1) for greeknumerall}}

When a a large number with three trailing zero’s is to be printed those zeros and
the numeric mark need to be discarded. As each ‘digit’ is processed by a separate
macro and because the processing needs to be expandable we need some helper
macros that help remember to not print the numeric mark (\anwtonos).

The command \anw@false switches the printing of the numeric mark off by
making \anw@print expand to nothing. The command \anw@true (re)enables the
printing of the numeric marc. These macro’s need to be robust in order to prevent
improper expansion during writing to files or during \uppercase.

28.84 \DeclareRobustCommand\anw@false{’

28.85 \DeclareRobustCommand\anw@print{}}

28.86 \DeclareRobustCommand\anw@true{’,

28.87 \DeclareRobustCommand\anw@print{\anwtonos}}
28.88 \anw@true

The command \greeknumeral needs to be fully expandable in order to get the
right information in auxiliary files. Therefore we use a big \if-construction to
check the value of the argument and start the parsing at the right level.

28.89 \def\greeknumeral#1{J,

99



If the value is negative or zero nothing is printed and a warning is issued.

28.90  \ifnum#1<\@ne\space\gr@ill@value{#1}%
28.91 \else

28.92 \ifnum#1<10\expandafter\grénum@i\number#1%

28.93 \else

28.94 \ifnum#1<100\expandafter\gr@num@ii\number#1

28.95 \else
We use the available shorthands for 1.000 (\@m) and 10.000 (\@M) to save a few
tokens.

28.96 \ifnum#1<\Om\expandafter\gr@num@iii\number#1y,

28.97 \else

28.98 \ifnum#1<\@M\expandafter\gr@num@iv\number#1y

28.99 \else

28.100 \1fnum#1<100000\expandafter\grénum@v\number#1y,

28.101 \else

28.102 \ifnum#1<1000000\expandafter\grnum@vi\number#17

28.103 \else

If the value is too large, nothing is printed and a warning is issued.
28.104 \space\gr@ill@value{#1}/,
28.105 \fi
28.106 \fi
28.107 \fi
28.108 \fi
28.109 \fi
28.110 \fi
28.111  \fi
28.112 }

\Greeknumeral The command \Greeknumeral prints uppercase greek numerals. The parsing is
performed by the macro \greeknumeral.

28.113 \def\Greeknumeral#1{/,
28.114  \expandafter\MakeUppercase\expandafter{\greeknumeral{#1}}}

\greek@alph In the previous release of this language definition the commands \greek@aplh and
\greek0Alph \greekQ@Alph were kept just for reasons of compatibility. Here again they become
meaningful macros. They are definited in a way that even page numbering with
greek numerals is possible. Since the macros \@alph and \@Alph will lose their
original meaning while the Greek option is active, we must save their original
value. macros \@alph
28.115 \let\latin®@alph\@alph
28.116 \let\latin@Alph\@Alph
Then we define the Greek versions; the additional \expandafters are needed
in order to make sure the table of contents will be correct, e.g., when we have
appendixes.

28.117 \def \greek@alph#1{\expandafter\greeknumeral\expandafter{\the#1}}

28.118 \def \greek@Alph#1{\expandafter\Greeknumeral\expandafter{\the#1}}
Now we can set up the switching.

28.119 \addto\extrasgreek{

28.120 \let\@alph\greek@alph

28.121  \let\@Alph\greek@Alph}

28.122 \addto\noextrasgreek{’,

28.123  \let\@alph\latin®@alph

28.124  \let\@Alph\latin@Alph}

\greek@roman To prevent roman numerals being typeset in greek letters we need to adopt the

\greek@Roman internal TEX commands \@roman and \@Roman. Note that this may cause
errors where roman ends up in a situation where it needs to be expanded;
problems are known to exist with the AMS document classes.

100



28.125 \let\latin@roman\@roman

28.126 \let\latinORoman\@Roman

28.127 \def\greek@roman#1{\textlatin{\latin@roman{#1}}}
28.128 \def \greek@Roman#1{\textlatin{\latinORoman{#1}}}
28.129 \addto\extrasgreek{’

28.130  \let\@roman\greek@roman

28.131  \let\@Roman\greekORoman}

28.132 \addto\noextrasgreek{’

28.133  \let\@roman\latin@roman

28.134 \let\@Roman\latin@Roman}

\greek@amp The greek fonts do not contain an ampersand, so the NTEX command \& dosn’t
\ltxoamp give the expected result if we do not do something about it.

28.135 \let\1txQamp\&

28.136 \def\greek@amp{\textlatin{\1ltxQampl}}
28.137 \addto\extrasgreek{\let\&\greek@amp}
28.138 \addto\noextrasgreek{\let\&\1txQamp}

What is left now is the definition of a set of macros to produce the various
digits.

\gr@num@i As there is no representation for 0 in this system the zeros are simply discarded.
\gronumeii When we have a large number with three trailing zero’s also the numeric mark
\gronumeiii 1S discarded. Therefore these macros need to pass the information to each other

about the (non-)translation of a zero.

28.139 \def \gr@num@i#1{/

28.140 \ifcase#1\or al\or b\or g\or d\or e\or \stigma\or z\or hlor j\fi
28.141  \ifnum#1=\z@\else\anw@true\fi\anwOprint}

28.142 \def \gr@num@ii#1{y

28.143 \ifcase#1\or ilor k\or 1l\or m\or n\or x\or o\or p\or \qoppa\fi
28.144  \ifnum#1=\z0@\else\anw@true\fi\grOnumoi}

28.145 \def\grOnum@iii#1{/

28.146  \ifcase#1\or r\or sv\or t\or ulor flor g\or y\or w\or \sampi\fi
28.147  \ifnum#1=\z@\anw@false\else\anw@true\fi\gr@num@ii}

\grenum@iv The first three ‘digits’ always have the numeric mark, except when one is discarded
\gronum@v because it’s value is zero.

\grénum@vi

\greek@tilde

28.148 \def\grOnum@iv#1{J

28.149  \ifnum#1=\z0Q\else\katwtonos\fi

28.150 \ifcase#1\or alor b\or g\or d\or e\or \stigmalor z\or h\or j\fi
28.151  \grOnum@iii}

28.152 \def \gr@num@v#1{/,

28.153  \ifnum#1=\z0@\else\katwtonos\fi

28.154  \ifcase#1\or ilor k\or 1l\or m\or n\or x\or o\or p\or \qoppa\fi
28.155  \gr@num@iv}

28.156 \def\grenum@vi#1{y

28.157 \katwtonos

28.158 \ifcase#1\or r\or svlor t\or ulor flor g\or y\or w\or \sampi\fi
28.159  \gr@num@v}

In greek typesetting we need a number of characters with more than one accent. In
the underlying family of fonts (the cb fonts) this is solved using Knuth’s ligature
mechanism. Characters we need to have ligatures with are the tilde, the acute
and grave accent characters, the rough and smooth breathings, the subscript,
and the double quote character. In text input the ~ is normaly used to produce
an unbreakable space. The command \~ normally produces a tilde accent. For
polytonic Greek we change the definition of \~ to produce the tilde character itself,
making sure it has category code 12.

28.160 \begingroup

28.161 \@ifundefined{active@char\string!}{}{\catcode‘!=12\relax}

28.162 \catcode‘\"=12

101



28.163  \lccode‘\!=‘\~

28.164 \lowercase{\def\x{\endgroup
28.165 \def\greek@tilde{!}}\x}
28.166 \addto\extraspolutonikogreek{’
28.167 \babel@save\~\let\~\greek@tilde}

In order to get correct hyphenation we need to set the lower case code of a number
of characters. The ‘v’ character has a special usage for the cb fonts: in fact this
ligature mechanism detects the end of a word and assures that a final sigma is
typeset with the proper sign wich is different from that of an initial or medial
sigma; the ‘v ’after an isolated sigma fools the ligature mechanism in order to
typeset o in place of ¢. Because of this we make sure its lowercase code is not
changed. For “modern” greek we have to deal only with > and " and so things are
easy.

28.168 \addto\extrasgreek{

28.169 \babel@savevariable{\lccode‘v}\lccode‘v="‘v}

28.170  \babel@savevariable{\lccode‘\’}\lccode‘\’=\"%

28.171  \babel@savevariable{\lccode‘\"}\lccode‘\"=\"}

28.172 \addto\extraspolutonikogreek{’

28.173 \babel@savevariable{\lccode‘\<}\1lccode‘\<=‘\<%

28.174  \babel@savevariable{\lccode‘\>}\lccode‘\>=\>}

28.175 \babel@savevariable{\lccode‘\~}\1lccode‘\~=\"Y%

28.176  \babel@savevariable{\lccode‘\|}\lccode‘\|[=\1%

28.177 \babel@savevariable{\lccode‘\‘}\lccode‘\‘=“\‘}

And in order to get rid of all accents and breathings when a string is \uppercased
we also change a number of uppercase codes.

28.178 \addto\extrasgreek{/,

28.179  \babel@savevariable{\uccode‘\"}\uccode‘\"=\"¥%

28.180 \babel@savevariable{\uccode‘\’}\uccode‘\’=159} %% 159 == ~~9f

28.181 \addto\extraspolutonikogreek{’,

28.182 \babel@savevariable{\uccode‘\~}\uccode‘\~"=159%

28.183 \babel@savevariable{\uccode‘\>}\uccode‘\>=159%

28.184 \babel@savevariable{\uccode‘\<}\uccode‘\<=159%

28.185 \babel@savevariable{\uccode‘\|}\uccode‘\[=\1%

28.186  \babel@savevariable{\uccode‘\‘}\uccode‘\‘=159}

For this to work we make the character ~~9f a shorthand that expands to nothing.
In order for this to work we need to make a character look like ~~9f in TEX’s eyes.
The trick is to have another character and assign it a different lowercase code.
The execute the macros needed in a \lowercase environment. Usually the tile
~ character is used for such purposes. Before we do this we save it’s original
lowercase code to restore it once we’re done.

28.187 \@tempcnta=\1lccode‘\~

28.188 \1lccode ‘\"=159

28.189 \lowercase{%

28.190 \initiate@active@char{~}%

28.191 \declare@shorthand{greek}{ " }{}}

28.192 \1lccode‘\~"=\@tempcnta

We can also make the tilde character itself expand to a tilde with category code
12 to make the typing of texts easier.

28.193 \addto\extraspolutonikogreek{\languageshorthands{greek}}/
28.194 \declare@shorthand{greek}{~}{\greek@tilde}

We now define a few symbols which are used in the typesetting of greek nu-
merals, as well as some other symbols which are usefull, such as the evpw symbol,
etc.

28.195 \DeclareTextCommand{\anwtonos}{LGR}{\char"FE\relax}
28.196 \DeclareTextCommand{\katwtonos}{LGR}{\char"FF\relax}
28.197 \DeclareTextCommand{\qoppa}{LGR}{\char"12\relax}
28.198 \DeclareTextCommand{\stigma}{LGR}{\char"06\relax}

102



28.199 \DeclareTextCommand{\sampi}{LGR}{\char"1B\relax}
28.200 \DeclareTextCommand{\Digamma}{LGR}{\char"C3\relax}
28.201 \DeclareTextCommand{\ddigamma}{LGR}{\char"93\relax}
28.202 \DeclareTextCommand{\vardigamma}{LGR}{\char"07\relax}
28.203 \DeclareTextCommand{\euro}{LGR}{\char"18\relax}

28.204 \DeclareTextCommand{\permill1}{LGR}{\char"19\relax}

Since the ~ cannot be used to produce an unbreakable white space we must
redefine at least the commands \fnum@figure and \fnum@table so they do not
produce a ~ instead of white space.

28.205 %\def\fnum@figure{\figurename\nobreakspace\thefigure}
28.206 %\def\fnum@table{\tablename\nobreakspace\thetable}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

28.207 \1df@f inish{\CurrentOption}
28.208 (/code)

103



29 The French language

The file frenchb.dtx?*, defines all the language definition macros for the French
language.

Customisation for the French language is achieved following the book “Lexique
des régles typographiques en usage & 'Imprimerie nationale” troisiéme édition
(1994), ISBN-2-11-081075-0.

First version released: 1.1 (1996,/05/31) as part of babel-3.6beta.

frenchb has been improved using helpful suggestions from many people,
mainly from Jacques André, Michel Bovani, Thierry Bouche, and Vincent Jalby.
Thanks to all of them!

This new version (2.0) has been designed to be used with WTEX 2z and
PlainTEX formats only. IXTEX-2.09 is no longer supported. Changes between
version 1.6 and 2.0 are listed in subsection 29.4 p. 108.

An extensive documentation is available in French here:

http://daniel.flipo.free.fr/frenchb

29.1 Basic interface

)

The command \selectlanguage{french} switches to the French language 2°
with the following effects:

1. French hyphenation patterns are made active;
‘double punctuation’ (: ; ! 7) is made active for correct spacing in French;
\today prints the date in French;

the caption names are translated into French (WTEX only);

s W

the default items in itemize environment are set to ‘—’ instead of ‘e’, and all
vertical spacing and glue is deleted, hooks to reset standard IMTEX settings
are provided (see \frenchbsetup{}); it is possible to change ‘-’ to something
else (‘— for instance) using \frenchbsetup{};

6. vertical spacing in general IXTEX lists is shortened, a hook to reset standard
BTEX settings is provided (see \frenchbsetup{});

7. the first paragraph of each section is indented (IWTEX only);
8. the space after \dots is removed in French.
Some commands are provided in frenchb to make typesetting easier:

1. French quotation marks can be entered using the commands \og and \fg
which work in I¥TEX 2cand PlainTEX, their appearance depending on what
is available to draw them; even if you use IMTEX 2¢ and T1l-encoding, you
should refrain from entering them as <<*French quotation marks™>>: \og
and \fg provide better horizontal spacing. \og and \fg can be used outside
French, they typeset then English quotes “ and ”.

2. A command \up is provided to typeset superscripts like M\up{me} (abbre-
viation for “Madame”), 1\up{er} (for “premier”). Other commands are also
provided for ordinals: \ier, \iere, \iers, \ieres, \ieme, \iemes (3\iemes
prints 3°%).

3. Family names should be typeset in small capitals and never be hyphenated,
the macro \bsc (boxed small caps) does this, e.g., Leslie™\bsc{Lamport}
will produce Leslie LAMPORT. Note that composed names (such as Dupont-
Durant) may now be hyphenated on explicit hyphens, this differs from
frenchb v.1.x.

24The file described in this section has version number ? and was last revised on ?.
25\selectlanguage{francais} and \selectlanguage{frenchb} are kept for backward com-
patibility but should no longer be used.

104



4. Commands \primo, \secundo, \tertio and \quarto may be used to enu-
merate in lists.

5. Abbreviations for “Numéro” and “numéro” are obtained via the commands
\No, \no.

6. Two commands are provided to typeset the symbol for “degré”: \degre prints
the raw character and \degres should be used to typeset temperatures (e.g.,
“20~\degres C” with an unbreakable space), or for alcohols’ strengths (e.g.,
“45\degres” with no space in French).

7. In math mode the comma has to be surrounded with braces to avoid a
spurious space being inserted after it, in decimal numbers for instance (see
the TEXbook p. 134). The command \DecimalMathComma makes the comma
be an ordinary character in French only (no space added); as a counterpart,
if \DecimalMathComma is active, an explicit space has to be added in lists
and intervals: $[0,\ 118, $(x,\ y)$. \StandardMathComma switches back
to the standard behaviour of the comma.

8. A command \nombre was provided in 1.x versions to easily format numbers
in slices of three digits separated either by a comma in English or with a
space in French; \nombre is now mapped to \numprint from numprint.sty,
see numprint.pdf for more information.

9. frenchb has been designed to take advantage of the xspace package if
present: adding \usepackage{xspacel} in the preamble will force macros
like \fg, \ier, \ieme, \dots, ..., to respect the spaces you type after them,
for instance typing ‘1\ier juin’ will print ‘1¢" juin’ (no need for a forced
space after 1\ier).

29.2 Customisation

Up to version 1.6, customisation of frenchb was achieved by entering commands in
frenchb.cfg. This possibility remains for compatibility, but should not longer be
used. Version 2.0 introduces a new command \frenchbsetup{} using the keyval
syntax which should make it easier to choose among the many options available.
The command \frenchbsetup{} is to appear in the preamble only (after loading
babel).

\frenchbsetup{ShowOptions} prints all available options to the .log file, it
is just meant as a remainder of the list of offered options. As usual with keyval
syntax, boolean options (as ShowOptions) can be entered as ShowOptions=true
or just ShowOptions, the ‘=true’ part can be omitted.

The other options are (their default value is shown between brackets):

e StandardLayout=true [false] forces frenchb not to interfere with the
layout: no action on any kind of lists, first paragraphs of sections are not
indented (as in English), no action on footnotes. This option replaces the
former command \StandardLayout. It can be used either for unifying the
layout of a document so that it is no longer language dependent or to avoid
conflicts with classes or packages which customise lists or footnotes.

e GloballLayoutFrench=true [false] is also meant for unifying the layout of
a document: lists typeset in other languages than French look the same as in
French and first paragraphs of sections are all indented. Note that the layout
of footnotes is language independent anyway (see below FrenchFootnotes
and AutoSpaceFootnotes). This option replaces the former command
\FrenchLayout.

105



AutoSpacePunctuation=false [true]; in French, the user should input a
space before the four characters ‘:;!?’ but as many people forget about it
(even among native French writers!), the default behaviour of frenchb is to
automatically add a \thinspace before ‘;’ ‘1" ‘?” and a normal (unbreakable)
space before ‘:” (recommended by the French Imprimerie nationale). This
is convenient in most cases but can lead to addition of spurious spaces in
URLs or in MS-DOS paths. Choosing AutoSpacePunctuation=false will
ensure that a proper space will be added before ‘:;!?’ if and only if a
(normal) space has been typed in. Those who are unsure about their typing
in this area should stick to the default option and type \string; \string:
\string! \string? instead of ; : ! ? whenever no space should be added
before them (mostly in URLs and MS-DOS paths).

ThinColonSpace=true [false] changes the normal (unbreakable) space
added before the colon ‘> to a thin space, so that the same amount of
space is added before any of the four double punctuation characters. The
default setting is supported by the French Imprimerie nationale.

ReduceListSpacing=false [true]; frenchb normally reduces the values
of the vertical spaces used in the environment list in French; setting this
option to false reverts to the standard settings of 1ist. This option replaces
the former command \FrenchListSpacingfalse.

CompactItemize=false [truel]; frenchb normally suppresses any vertical
space between items of itemize lists in French; setting this option to false
reverts to the standard settings of itemize lists. This option replaces the
former command \FrenchItemizeSpacingfalse.

StandardItemLabels=true [false] when set to true this option stops
frenchb from changing the labels in itemize lists in French.

ItemLabels=\textemdash, \textbullet, \ding{43}, ..., [\textendashl;
when StandardItemLabels=false (the default), this option enables to
choose the label used in itemize lists for all levels. The next three op-
tions do the same but each one for one level only. Note that the example
\ding{43} requires \usepackage{pifont}.

ItemLabeli=\textemdash, \textbullet, \ding{43}, ...,[\textendash]

ItemLabelii=\textemdash, \textbullet, \ding{43}, ..., [\textendash]
ItemLabeliii=\textemdash, \textbullet, \ding{43}, ..., [\textendash]
ItemLabeliv=\textemdash, \textbullet, \ding{43}, ..., [\textendash]

StandardLists=true [false] forbids frenchb to customize any kind of
list. Do activate the option StandardLists when using classes or pack-
ages that customise lists too (enumitem, paralist, ...) to avoid con-
flicts. This option is just a shorthand for ReduceListSpacing=false and
CompactItemize=false and StandardItemLabels=true.

IndentFirst=false [truel]; frenchb normally forces indentation of the
first paragraph of sections (in French only). When this option is set to
false, the first paragraph of will look the same in French and in English
(not indented).

FrenchFootnotes=false [true] reverts to the standard layout of foot-
notes. By default frenchb typesets leading numbers as ‘1. ' instead
of ‘¥, but has no effect on footnotes numbered with symbols (as in the
\thanks command). The former commands \StandardFootnotes and
\FrenchFootnotes are still there, \StandardFootnotes can be useful when
some footnotes are numbered with letters (inside minipages for instance).

106



e AutoSpaceFootnotes=false [true] ; by default frenchb adds a thin space
in the running text before the number or symbol calling the footnote. Making
this option false reverts to the standard setting (no space added).

e PartNameFull=false [true]; when true, frenchb numbers the title of
\part{} commands as “Premiére partie”, “Deuxiéme partie” and so on. With
some classes which change the\part{} command (AMS and SMF classes do
s0), you will get “Premiére partie I”, “Deuxiéme partie II” instead; when this
occurs, this option should be set to false, part titles will then be printed
as “Partie I”, “Partie II”.

e og=«, fg=»; when guillemets characters are available on the keyboard
(through a compose key for instance), it is nice to use them instead of typing
\og and \fg. This option tells frenchb which characters are opening and
closing French guillemets (they depend on the input encoding), then you can
type either « guillemets », or «guillemets» (with or without spaces), to
get properly typeset French quotes. This option requires inputenc to be
loaded with the proper encoding, it works with 8-bits encodings (latinl,
latin9, ansinew, applemac,...) and multi-byte encodings (utf8 and utf8x).

29.3 Hyphenation checks

Once you have built your format, a good precaution would be to perform some
basic tests about hyphenation in French. For IMTEX 2¢ I suggest this:

e run the following file, with the encoding suitable for your machine (my-
encoding will be latinl for UNIX machines, ansinew for PCs running Win-
dows, applemac or latinl for Macintoshs, or utf8. ..

%h% Test file for French hyphenation.
\documentclass{article}

\usepackage [my-encoding]l {inputenc}
\usepackage [T1]{fontenc} % Use LM fonts

\usepackage{lmodern} % for French
\usepackage [frenchb] {babel}
\begin{document}

\showhyphens{signal container \’ev\’enement alg\‘ebre}
\showhyphens{signal container événement algébre}
\end{document}

e check the hyphenations proposed by TEX in your log-file; in French you
should get with both 7-bit and 8-bit encodings
si-gnal contai-ner évé-ne-ment al-gébre.
Do not care about how accented characters are displayed in the log-file, what
matters is the position of the ‘-’ hyphen signs only.

If they are all correct, your installation (probably) works fine, if one (or more) is
(are) wrong, ask a local wizard to see what’s going wrong and perform the test
again (or e-mail me about what happens).

Frequent mismatches:

e you get sig-nal con-tainer, this probably means that the hyphenation
patterns you are using are for US-English, not for French;

e you get no hyphen at all in évé-ne-ment, this probably means that you
are using CM fonts and the macro \accent to produce accented charac-
ters. Using 8-bits fonts with built-in accented characters avoids this kind of
mismatch.

Options’ order — Please remember that options are read in the order they ap-
pear inside the \frenchbsetup command. Someone wishing that frenchb leaves

107



the layout of lists and footnotes untouched but caring for indentation of first para-
graph of sections could choose \frenchbsetup{StandardLayout,IndentFirst}

and get the expected layout. Choosing \frenchbsetup{IndentFirst,StandardLayout}
would not lead to the expected result: option IndentFirst would be overwritten

by StandardLayout.

29.4 Changes
What’s new in version 2.07

Here is the list of all changes:

e Support for BTEX-2.09 and for BTEX 2 in compatibility mode has been
dropped. This version is meant for BTEX 2 and Plain based formats (like
bplain). IWTEX 2¢ formats based on mlTEX are no longer supported either
(plenty of good 8-bits fonts are available now, so T1 encoding should be
preferred for typesetting in French). A warning is issued when OT1 encoding
is in use at the \begin{document}.

e Customisation should now be handled by command \frenchbsetup{},
frenchb.cfg (kept for compatibility) should no longer be used. See sec-
tion 29.2 for the list of available options.

e Captions in figures and table have changed in French: former abbreviations
“Fig.” and “Tab.” have been replaced by full names “Figure” and “Table”. If
this leads to formatting problems in captions, you can add the following two
commands to your preamble (after loading babel) to get the former captions
\addto\captionsfrench{\def\figurename{{\scshape Fig.}}}
\addto\captionsfrench{\def\tablename{{\scshape Tab.}}}.

e The \nombre command is now provided by the numprint package which has
to be loaded after babel with the option autolanguage if number formatting
should depend on the current language.

e The \bsc command no longer uses an \hbox to stop hyphenation of names
but a \kernOpt instead. This change enables microtype to fine tune the
length of the argument of \bsc; as a side-effect, compound names like
Dupont-Durand can now be hyphenated on explicit hyphens. You can get
back to the former behaviour of \bsc by adding
\renewcommand*{\bsc}[1]{\leavevmode\hbox{\scshape #1}}
to the preamble of your document.

e Footnotes are now displayed “a la frangaise” for the whole document, except
with an explicit
\frenchbsetup{AutoSpaceFootnotes=false,FrenchFootnotes=false}.
Add this command if you want standard footnotes. It is still pos-
sible to revert locally to the standard layout of footnotes by adding
\StandardFootnotes (inside a minipage environment for instance).

29.5 File frenchb.cfg

frenchb.cfg is now a dummy file just kept for compatibility with previous ver-
sions.

29.1 %ot oo ToTototo o o o T ToToto to o o o T To To o 1o o oo T To To o 1o o oo o T To o o 1o oo o T To T 2 o oo o T T To o o o oo o oo
29.2 %hhhhhhhh  WARNING: THIS FILE SHOULD NO LONGER BE USED  %A%%A%AA%
29.3 %% If you want to customise frenchb, please DO NOT hack into the code!
29.4 %% Do no put any code in this file either, please use the new command
29.5 %% \frenchbsetup{} with the proper options to customise frenchb.

29.6 %%

29.7 %% Add \frenchbsetup{ShowOptions} to your preamble to see the list of
29.8 %/ available options and/or read the documentation.

29.9 %ottt hhhlhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhlhlolols

108



30 TgXnical details

30.1 [Initial setup

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

30.1 \LdfInit\CurrentOption\datefrench

\ifLaTeXe No support is provided for late ITFX-2.09: issue a warning and exit if I#TEX-2.09
is in use. Plain is still supported.
30.2 \newif\ifLaTeXe
30.3 \ifx\magnification\@undefined
30.4 \ifx\Qcompatibilitytrue\Qundefined

30.5 \PackageError{frenchb.1df}/

30.6 {LaTeX-2.09 format is no longer supported.\MessageBreak
30.7 Aborting here.}’

30.8 \endinput

30.9 \else

30.10 \LaTeXetrue

30.11 \fi

30.12 \fi

Check if hyphenation patterns for the French language have been loaded in
language.dat; we allow for the names ‘french’, ‘francais’, ‘canadien’ or ‘acadian’.
The latter two are both names used in Canada for variants of French that are in
use in that country.

30.13 \ifx\1@french\@undefined
30.14 \ifx\l@francais\@undefined

30.15 \ifx\1l@canadien\@undefined
30.16 \ifx\1l@acadian\@undefined
30.17 \@nopatterns{French}
30.18 \adddialect\1@frenchO
30.19 \else

30.20 \let\l@french\l@acadian
30.21 \fi

30.22 \else

30.23 \let\l@french\l@canadien
30.24 \fi

30.25 \else

30.26 \let\l@french\l@francais
30.27 \fi

30.28 \fi

Now \l@french is always defined.

The internal name for the French language will be ‘french’; ‘francais’ and
‘frenchb’ will be synonymous for ‘french’: first let both names use the same
hyphenation patterns. Later we will have to set aliases for \captionsfrench,
\datefrench, \extrasfrench and \noextrasfrench. As French uses the stan-
dard values of \lefthyphenmin (2) and \righthyphenmin (3), no special setting
is required here.

30.29 \def\CurrentOption{french}
30.30 \ifx\1@francais\@undefined
30.31 \let\l@francais\l@french
30.32 \fi

30.33 \ifx\1@frenchb\@undefined
30.34 \let\l@frenchb\l@french
30.35 \fi

When this language definition file was loaded for one of the Canadian versions of
French we need to make sure that a suitable hyphenation pattern register will be

found by TEX.

109



30.36 \ifx\1@canadien\@undefined

30.37 \let\l@canadien\l@french

30.38 \fi

30.39 \ifx\1@acadian\@undefined

30.40 \let\l@acadian\l@french

30.41 \fi

This language definition can be loaded for different variants of the French

language. The ‘key’ babel macros are only defined once, using ‘french’ as the
language name, but frenchb and francais are synonymous.

30.42 \def\datefrancais{\datefrench}

30.43 \def\datefrenchb{\datefrench}

30.44 \def\extrasfrancais{\extrasfrench}

30.45 \def\extrasfrenchb{\extrasfrench}

30.46 \def\noextrasfrancais{\noextrasfrench}

30.47 \def\noextrasfrenchb{\noextrasfrench}

\extrasfrench The macro \extrasfrench will perform all the extra definitions needed for the
\noextrasfrench FIrench language. The macro \noextrasfrench is used to cancel the actions of
\extrasfrench.
In French, character“apostrophe” is a letter in expressions like 1’ambulance
(French hyphenation patterns provide entries for this kind of words). This means
that the \1ccode of “apostrophe” has to be non null in French for proper hyphen-
ation of those expressions, and has to be reset to null when exiting French.

30.48 \@namedef{extras\CurrentOption}{\lccode‘\’=¢\’}
30.49 \@namedef{noextras\CurrentOption}{\lccode‘\’=0}

One more thing \extrasfrench needs to do is to make sure that \frenchspacing
is in effect. \noextrasfrench will switch \frenchspacing off again.

30.50 \expandafter\addto\csname extras\CurrentOption\endcsname{%

30.51 \bbl@frenchspacing}
30.52 \expandafter\addto\csname noextras\CurrentOption\endcsname{’,
30.53 \bbl@nonfrenchspacing}

30.2 Punctuation

As long as no better solution is available 2, the ‘double punctuation’ characters

(; ' 7 and :) have to be made \active for an automatic control of the amount
of space to insert before them. Before doing so, we have to save the standard
definition of \@makecaption (which includes two ’”) to compare it later to its
definition at the \begin{document}.

30.54 \long\def\STD@makecaption#1#2{/,

30.55 \vskip\abovecaptionskip

30.56  \sbox\Q@tempboxa{#1: #2}J,

30.57 \ifdim \wd\@tempboxa >\hsize

30.58 #1: #2\par

30.59 \else

30.60 \global \@minipagefalse

30.61 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}},
30.62  \fi

30.63 \vskip\belowcaptionskip}/

We define a new ‘if’ \FBpunct@active which will be made false whenever a
better alternative will be available. The following code makes the four characters
; ! 7 and : ‘active’ and provides their definitions.

30.64 \newif\ifFBpunct@active \FBpunct@activetrue
30.65 \ifFBpunct®@active

30.66 \initiate@active@char{:}

30.67 \initiate@active@char{;}

30.68 \initiate@active@char{!}

26LuaTEX, or pdf TEX might provide alternatives in the future. ..

110



30.69 \initiate@active@char{?}

We first tune the amount of space before ; ! ? and :. This should only happen
in horizontal mode, hence the test \ifhmode.

In horizontal mode, if a space has been typed before ‘;> we remove it and
put an unbreakable \thinspace instead. If no space has been typed, we add
\FDP@thinspace which will be defined, up to the user’s wishes, as an automatic
added thin space, or as \Qempty.

30.70 \declare@shorthand{french}{;}{%

30.71 \ifhmode

30.72 \ifdim\lastskip>\z@

30.73 \unskip\penalty\@M\thinspace
30.74 \else

30.75 \FDP@thinspace

30.76 \fi

30.77 \fi

Now we can insert a ; character.
30.78 \string;}

The next three definitions are very similar.
30.79 \declare@shorthand{french}{!}{%

30.80 \ifhmode

30.81 \ifdim\lastskip>\z@

30.82 \unskip\penalty\@M\thinspace
30.83 \else

30.84 \FDP@thinspace

30.85 \fi

30.86 \fi

30.87 \string!}

30.88 \declare@shorthand{french}{7}{%

30.89 \ifhmode

30.90 \ifdim\lastskip>\z@

30.91 \unskip\penalty\@M\thinspace
30.92 \else

30.93 \FDP@thinspace

30.94 \fi

30.95 \fi

30.96 \string?}

According to the I.N. specifications, the ¢’ requires a normal space before it,
but some people prefer a \thinspace (just like the other three). We define
\Fcolonspace to hold the required amount of space (user customisable).

30.97 \newcommand*{\Fcolonspace}{\space}

30.98 \declare@shorthand{french}{:}{%

30.99 \ifhmode
30.100 \ifdim\lastskip>\z@
30.101 \unskip\penalty\@M\Fcolonspace
30.102 \else
30.103 \FDP@colonspace
30.104 \fi
30.105 \fi
30.106 \string:}

\AutoSpaceBeforeFDP \FDP@thinspace and \FDP@space are defined as unbreakable spaces by
\NoAutoSpaceBeforeFDP \AutoSpaceBeforeFDP or as \@empty by \NoAutoSpaceBeforeFDP.
Default is \AutoSpaceBeforeFDP.

30.107  \def\AutoSpaceBeforeFDP{}

30.108 \def\FDP@thinspace{\penalty\@M\thinspacel,
30.109 \def\FDP@colonspace{\penalty\@M\Fcolonspace}}
30.110  \def\NoAutoSpaceBeforeFDP{\let\FDPQ@thinspace\Q@empty
30.111 \let\FDPQcolonspace\@empty}

30.112  \AutoSpaceBeforeFDP

111



When the active characters appear in an environment where their French be-
haviour is not wanted they should give an ‘expected’ result. Therefore we define
shorthands at system level as well.

30.113 \declare@shorthand{system}{:}{\string:}

30.114 \declare@shorthand{system}{!}{\string!}

30.115 \declare@shorthand{system}{7}{\string?}

30.116  \declare@shorthand{system}{;}{\string;}

We specify that the French group of shorthands should be used.

30.117 \addto\extrasfrench{},
30.118 \languageshorthands{french}y,

These characters are ‘turned on’ once, later their definition may vary. Don’t
misunderstand the following code: they keep being active all along the document,
even when leaving French.

30.119 \bbl@activate{:}\bbl@activate{;}%
30.120 \bbl@activate{!}\bbl@activate{?}}
30.121 }

30.122 \addto\noextrasfrench{/,

30.123 \bbl@deactivateq{:}\bbl@deactivated{;}%
30.124 \bbl@deactivate{!}\bbl@deactivate{?}}
30.125 \fi

30.3 French quotation marks

\og The top macros for quotation marks will be called \og (“ouvrez guillemets”) and
\tg \fg (“fermez guillemets”). Another option for typesetting quotes in multilingual

\guillemotleft
\guillemotright

texts is to use the package csquotes.sty and its command \enquote.

30.126 \newcommand*{\og}{\@empty}
30.127 \newcommand*{\fg}{\@empty}

KTEX users are supposed to use 8-bit output encodings (T1, LY1,...) to typeset
French, those who still stick to OT1 should call aeguill.sty or a similar package.
In both cases the commands \guillemotleft and \guillemotright will print the
French opening and closing quote characters from the output font. For XeLaTeX,
\guillemotleft and \guillemotright are defined by package xunicode.sty.
We will check ‘AtBeginDocument’ that the proper output encodings are in use
(see end of section 30.13).
We give the following definitions for Plain users only as a (poor) fall-back, they

are welcome to change them for anything better.

30.128 \ifLaTeXe

30.129 \else

30.130 \ifx\guillemotleft\@undefined

30.131 \def\guillemotleft{\leavevmode\raise0.25ex

30.132 \hbox{$\scriptscriptstyle\11$}}
30.133  \fi

30.134 \ifx\guillemotright\@undefined

30.135 \def\guillemotright{\raise0.25ex

30.136 \hbox{$\scriptscriptstyle\gg$}}
30.137  \fi

30.138  \let\xspace\relax

30.139 \fi

The next step is to provide correct spacing after \guillemotleft and be-
fore \guillemotright: a space precedes and follows quotation marks but no
line break is allowed neither after the opening one, nor before the closing one.
\FBguill@spacing which does the spacing, has been fine tuned by Thierry
Bouche. French quotes (including spacing) are printed by \FBQog and \FB@fg,
the expansion of the top level commands \og and \og is different in and outside
French. We'll try to be smart to users of D. Carlisle’s xspace package: if this

112



package is loaded there will be no need for {} or \ to get a space after \fg,
otherwise \xspace will be defined as \relax (done at the end of this file).

30.140 \newcommand*{\FBguill@spacing}{\penalty\@M\hskip.8\fontdimen2\font

30.141 plus.3\fontdimen3\font
30.142 minus.8\fontdimen4\font}
30.143 \DeclareRobustCommand*{\FB@og}{\leavevmode

30.144 \guillemotleft\FBguill@spacing}

30.145 \DeclareRobustCommand*{\FBefg}{\ifdim\lastskip>\z@\unskip\fi

30.146 \FBguill@spacing\guillemotright\xspace}

The top level definitions for French quotation marks are switched on and off
through the \extrasfrench \noextrasfrench mechanism. Outside French, \og
and \fg will typeset standard English opening and closing double quotes.

30.147 \ifLaTeXe
30.148 \def\bbl@frenchguillemets{\renewcommand*{\og}{\FB@og}’

30.149 \renewcommand*{\fg}{\FB@fgl}}

30.150  \def\bbl@nonfrenchguillemets{\renewcommand*{\og}{\textquotedblleftl}y,
30.151 \renewcommand*{\fg}{\ifdim\lastskip>\z@\unskip\fi

30.152 \textquotedblright}}

30.153 \else
30.154 \def\bbl@frenchguillemets{\let\og\FB@og

30.155 \let\fg\FBefg}

30.156 \def\bblOnonfrenchguillemets{\def\og{‘‘}%

30.157 \def\fg{\ifdim\lastskip>\z@\unskip\fi ’’}}
30.15