
be
s in
et

ill

in
e.
s
,

d
ac-
nd
d

l
,
nd
ge
e

d
e

y

i-

or
nt

f-

Handling Passwords with
Security and Reliability
in Background Processes

Don Libes – National Institute of Standards and Technology

ABSTRACT

Traditionally, background automation of interactive processes meant giving up security and reli-
ability. With the advent of software such as Expect for controlling interactive processes, it has
become possible to improve reliability and security with relative ease.

This paper reviews the reliability aspects but focuses primarily on the security aspects, presenting
several non-obvious techniques for dealing with passwords and other sensitive information in back-
ground processes. These techniques require no changes to existing programs and no new security
systems are necessary. With the appropriate tools and examples, these techniques can be applied
with surprisingly little effort to a wide variety of problems.
Introduction

Shell scripts cannot automate interactive processes
except in the simplest of ways. In particular, data can
be written to a process but only following one path
through the program. Responding to programs is not
possible. Problems such as timing and buffering can
make automation difficult if not impossible.

It is possible to reliably automate interactive processes
with a variety of tools including C, Perl, and Emacs.
For simplicity, I will present examples in Expect
[Libes94], but other tools are similarly applicable.
Indeed, both Perl’s “chat2” [Schwartz90] and the C/
C++ Expect library were modelled after the Expect
program.

Automating ftp is a common problem. The usual
solutions are to use an.ftprc file or an in-line “<<”
script. Unfortunately, these sacrifice both reliability
and security. Reliability is lost because these mecha-
nisms offer no way to verify that the commands
succeed. Security is lost when passwords are stored as
cleartext in a file or passed as cleartext through
command-line arguments. (For simplicity, from now
on I will refer to all sensitive information as “pass-
words”.) Security systems such as Kerberos
[Miller87] do not address these problems.

This paper does not address the simple cases where
applications are entirely under your control and can be
modified or otherwise forced to run without pass-
words. sudo [Nieusma] and similar programs provide
a direct solution to these problems.

In contrast, the problems addressed by this paper
demanda password. A simple case might be that of
designing a means to use a service from a commercial
provider in the background. An automated solution
requires you to log in and supply the password. The
commercial service is not under your control.

This paper describes several techniques that can
used to handle passwords in background processe
a secure way. The techniques are non-traditional y
relatively simple to implement. These techniques w
be demonstrated using Expect.

Expect – An Overview

Because the examples in this paper are written
Expect, an overview of the language is provided her
The implementation and philosophy of Expect i
described at length in the literature [Libes90
Libes91]. Briefly, scripts are written in an interprete
language. Commands are provided to create inter
tive processes and to read and write their output a
input. Expect is named after the specific comman
which waits for output from a program.

The language of Expect is based on Tc
[Ousterhout94]. Tcl is actually a subroutine library
which becomes embedded into an application a
provides language services. The resulting langua
looks very much like a typical shell language. Ther
are commands to set variables (set), control flow (if ,
for , continue , etc.), and perform the usual math an
string operations. Of course, UNIX programs can b
called (exec). All of these facilities are available to
any Tcl application. Tcl is completely described b
Ousterhout.

Expect is built alongside of Tcl and provides add
tional commands. Thespawn command invokes a
UNIX program for interactive use.send sends strings
to a process.expect waits for strings from a process.
expect supports regular expressions and can wait f
multiple strings at the same time, executing a differe
action for each string. expect also understands
exceptional conditions such as time-out and end-o
file.
Reprinted from the Proceedings of the Eighth Systems Administration Conference (LISA VIII),
San Diego, California, September 19-23, 1994.

e
y
t
e

te
to

le,

urs
ly

e
he
e
ll
ipt
e

an
m,
or

e
ce

or
Using Expect it is possible to scripttelnet , ftp ,
rlogin , rz /sz , and numerous other programs. Many
of these tasks fall in the domain of system administra-
tion. For example, a system administrator creating
thousands of accounts each semester will find an auto-
matedpasswd program much more convenient than
having to type in each password manually.

The following script is another example, driving the
fsck program so that one class of questions is
answered “yes” while another is answered “no”. If
anything else appears, control is temporarily turned
over to a user to answer it.
while 1 {

expect {
eof {break}
"UNREF FILE*CLEAR\\?" {send "y\r"}
"BAD INODE*FIX\\?" {send "n\r"}
"\\? " {interact +}

}
}

Using a script like this one can substantially raise the
reliability of tasks that normally require interactive
use.

Expect and related programs can be put to a wide
variety of uses as others have found [Woodson91,
Morrison92, Stevens92, Caffrey92, Dichter93] solving
problems which were not even recognized as prob-
lems only because there were no good solutions.

A particularly common problem addressed by interac-
tion automation software is entering passwords.
Passwords are usually entered by hand. Most
programs (rlogin , crypt , etc.) use getpass , a
UNIX library function, which reads the password
from /dev/tty . Since /dev/tty cannot be redi-
rected from the shell, the user must enter keystrokes
manually. A variety of kludges have appeared over
the years to defeat such security measures. Why?
Because entering passwords manually is tiresome.
Consider having to enter the same passwords every
day to make use of a service.

The remainder of this paper will focus on automating
the handling passwords with special regard to back-
ground processes. Background processes are a
general goal – if you can run a process in the back-
ground, it is completely automated. You can turn
your attention to other things.

In many cases, everything in a process can be auto-
mated except for the password entry. Were this
automated, the process as a whole could be made into
a background process. So how do we fix this
problem?

I will describe several common scenarios involving
handling passwords. In each case, I will explain how
to automate the handling, usually resulting in a
completely automated and backgroundable process.

I will use the term script to refer to that which
performs the automation and may indirectly run th
trueprogramof interest. Of course, the program ma
indeed be a script. Similarly, the role of the scrip
may be played by a compiled program. However, th
terms I will use are accurate for most applications.

Technique 1: In the Foreground, Prompt For Pass-
words Ahead Of Time

The technique described in this section is appropria
for a user who decides at the spur of the moment
schedule a background task for a later time. (Spur of
the momentis not meant to imply the command is
trivial or light-hearted. Virtually all interactive
commands are spur of the moment.) For examp
imagine a user wants to automate atelnet session to
another host. The session must occur several ho
later, however. The user will not be present to supp
the password.

One solution is to write a script that prompts for th
password immediately when the user makes t
request. The script begins running interactively. Th
first thing it does is prompt for passwords. Once a
sensitive information has been gathered, the scr
disconnects from the terminal and continues in th
background, perhaps sleeping if necessary until
appropriate time. The script then starts the progra
interactively answering the program’s requests f
passwords.

Below is a sample of such a script using Expect. Th
script is not setuid and may be readable to others sin
no passwords are embedded within.
prompt and collect password for later
stty -echo
send "password? "
expect -re "(.*)\n"
send "\n"
set password $expect_out(1,string)

got the password, now go
into the background
if {[fork] != 0} exit
disconnect

now in background, sleep (or wait
for event, etc)
sleep 3600

now do something requiring the password
spawn rlogin $host
expect "password:"
send "$password\r"
. . .

This script can be extended as necessary. F
example, the task mighttelnet to multiple hosts or a
additional hosts from the firsttelnet . Each of these

te
re

ed

e
en
ts

y,
ser
he

s

ss
e

ect
ed

trol

y
i-
r
m

t
-

eit
t
le,
on
in turn requires more passwords. These can be
prompted for and collected when the script has begun.

The prompt should make clear what the passwords are
for. It may be helpful to explain why the password is
needed, or that it is needed for later. Consider the
following prompts:
send "password for $user1 on $host1: "
send "password for $user2 on $host2: "
send "password for root on hobbes: "
send "encryption key for $user3: "
send "sendmail wizard password: "

It is a good idea to force the user to enter the pass-
word twice. It may not be possible to authenticate it
immediately (for example, the machine it is for may
not be up at the moment), but at least the user can
lower the probability of the script failing later due to a
mistyped password.
stty -echo
send "root password: "
expect -re "(.*)\n"
send "\n"
set passwd $expect_out(1,string)
send "Again:"
expect -re "(.*)\n"
send "\n"
if {[string compare $passwd \

$expect_out(1,string)] != 0} {
send "mistyped password?"
exit

}

You can even offer to display the password just typed.
This is not a security risk as long as the user can
decline the offer or can display the password in
privacy. Remember that the alternative of passing it
as an argument allows anyone to see it if they runps
at the right moment.

Even without thedisconnect command, this is a
valuable technique. For examplepassmass is an
Expect script that changes passwords on multiple
machines simultaneously. This is useful if you have
accounts on several machines that do not share pass-
word databases yet you want to use the same
password on all of them. While this sounds like an
obvious security hole,passmass can actually increase
security. Becausepassmass makes it so much easier
to change your passwords on all your accounts, you
are much more likely to change them more frequently.
And by keeping them the same, you are less likely to
have to resort to writing them down in places that you
shouldn’t. Note thatpassmass is not recommended
for widely distributed sites where communications
over public networks provides little defense against
password exposure. Nor ispassmass recommended
for root , where this idea is too simplistic and addi-
tional precautions should be taken.

Technique 2: From the Background, Prompt For
Passwords When Needed

This technique described in this section is appropria
for commonly occurring tasks such as those that a
scheduled at boot time or are regularly schedul
throughcron .

One solution is to write a simple script which runs th
program until it requests a password. The script th
tracks down a user (possibly from a list) and reques
the user talk to it (using “talk ” or “ write ”). Once
connected, the script explains what it wants and wh
and then asks the user for a password. The u
supplies it, the script disconnects and returns to t
background to continue its processing.

In the following example, the script communicate
only with a single user. The script useskibitz
[Libes93] to communicate. kibitz is a talk -like
program notable in that it allows sharing of a proce
(e.g., shell) between multiple users. With th
-noproc flag, kibitz supports communication
without a shared process.
spawn kibitz -noproc $user

Once connected, the user can interact with the Exp
process or can take direct control of the spawn
process. The following Expect fragment, run from
cron , implements the latter possibility. The variable
proc is initialized with the spawn id of the errant
process while kibitz is the currently spawned
process. When the user presses the tilde key, con
is returned to the script.
spawn some-process; set proc $spawn_id
. . .
. . .
script now has question or problem
so it contacts user
spawn kibitz -noproc some-user
interact -u $proc -o ~ {

close
wait
return

}

If proc refers to a shell, then you can use it to run an
UNIX command. You can examine and set the env
ronment variables interactively. You can run you
process inside a debugger or while tracing syste
calls (i.e., undertrace or truss). And this will all
be undercron . This is also an ideal way of debug-
ging programs that work in the normal environmen
but fail undercron . Figure 1 shows the process rela
tionship created by this bit of scripting.

Those half-dozen lines (above) are a complete, alb
simple, solution. A more professional touch migh
describe to the user what is going on. For examp
after connecting, the script could send an explanati
such as:

es
ut
rd.
s
ut

s-

ll
l
of

en
s,
to
a
si-
re

ts
e
g

kibitz kibitz

expect

cron

logical
data flow
during interact

spawned
process

Figure 1: Process hierarchy and data flow established when Expect script running a
spawned process under cron decides that it needs assistance from a user.
send "Host frisbee.net is requesting a
password when I tried to login in
as user ferdy. Can you tell me
what the password is (p) or should
I let you interact (i) or kill me
(k)?"

The script describes the problem and offers the user a
choice of possibilities. Here is how the response
might be handled:
expect {

k {
send "ok, I’ll kill myself...

 thanks"
exit

}
p {

send -i $proc [get_password]
send "thanks!"

}
i {

send "press X to give up control,
 A to abort everything"

interact -u $proc -o X return A
exit
send "ok, thanks for helping.

 I’ll take over now"
}

}
close
wait
script continues from here

This technique can also be used for non-essential
information, such as if the script has a question about
what to do in a certain situation, or is performing a
backup and needs another tape.

Technique 3: Protect Cleartext Passwords in
Scripts by Permission
The scenario described in the remaining techniqu
applies when a user does not know a password b
needs a service performed that requires the passwo
For example, mounting devices and initiating backup
are typical operations that users need to perform b
which require root permission on many hosts.

An obvious solution is to embed the cleartext pas
word in a heavily-protected script. For example:
spawn su
expect "Password:"
send "ak3KuIO3\r"
.
.

Schemes to do this without root involvement are we
known, such as by using setgid scripts to artificia
users and groups created just for the purpose
running such scripts. However, this is difficult to
make secure and impossible on some systems wh
using scripts. Even when using compiled program
secure handling of passwords is tricky and prone
mishap. The storing of cleartext passwords on
public system is a bad idea. There are too many pos
bilities for lapses of security. These issues a
described at length in the literature [Garfinkel91].

This technique is very insecure. Do not use it!

Technique 4: Protect Cleartext Passwords in
Scripts by Login
It is possible to embed cleartext passwords in scrip
and protect the scripts more securely than in th
previous technique by placing password-containin
scripts on an entirely different host (called theadmin

e
s
en

re

g
e,
ep
a

t.
ed

y
e
r-
h

is
y
ity

nd
not

can

ge-
or
,
at

t
r

a
er
n
it

ing
r
ks
is

are
er
host from hereon), thereby avoiding file system access
holes. Rather than using file system permissions,
general shell access is not permitted to the admin host.
Instead, each different script is run by logging in to a
different account. Their are no normal user accounts –
only root has access to a general-purpose shell on the
admin host.

Writing such a login script to provide a service takes
little extra skill than writing any script. Programmers
must avoid the obvious pitfalls such as allowing users
to invoke a shell or write arbitrary files. However,
these are a small subset of the usual concerns in
writing setuid scripts. For example, without a shell,
users can not change theIFS definition or play games
with symbolic links.

The key concept here is that scripts can literally store
passwords in them with no fear of them being
exposed. They cannot be exposed because users
cannot read them. They cannot read them because
they cannot even log in to the machine in any but
extremely restricted ways.

With this technique it is possible to write scripts that
log in and connect to other machines which require
passwords. For instance, a user may indirectly
connect back to their own machine. Imagine a user is
working late and wants to suspend the automatic
backups that normally run every night at 3AM. The
user logs in to the admin host as, say, “backup-
suspend ”. The login script for backup-suspend
logs into the user’s host asroot and suspends the
backup. The user might see this interaction:
lion% telnet admin-host
login: backup-suspend
Backup suspended on host lion
lion%

This particular interaction could be simplified by an
email interface since there is nothing interactive here
but one might imagine interactions that are much more
complex, perhaps even popping up a window on the
user’s system.

An obvious drawback of this approach is that a second
host is required. However, this is not a big deal
because computers are cheap. Realistically, most
environments have unused computers sitting idle –
oftentimes shunned just because they are slow. These
slow hosts are entirely suitable for this job since the
significant processing occurs on the user’s host after
the password-containing script has logged in.
Although the admin host is executing a script, the
admin host is not actually doing the cpu-intensive
work, the admin host is merely telling the user host
what to do. The user host is where the significant
work is being done.

A second drawback of this technique is that the pass-
word is made available for exposure by network
sniffing. However, this is a problem for any supe-
ruser that logs in over the network.

Finally, it should be obvious that the admin machin
must be physically off-limits and its backup tape
must be secure. If either of these are not the case, th
obviously the machine is not a safe place to sto
passwords.

One may draw the analogy that this is akin to placin
all of your eggs in one basket. This is quite accurat
however this is a very small basket and easy to ke
watch over. Many sites have the analogy of such
basket already, but without realizing or admitting i
Indeed, sites with servers that are kept behind lock
doorsare treating their computers as such baskets.

Technique 5: Protect Cleartext Passwords in
Scripts by Using Daemons
In the previous technique, the script is invoked b
remotely logging in to another host. An unfortunat
attribute of that technique is that some minimal inte
action is hard to avoid. In particular, programs suc
as telnet will prompt for the user name. If the user
is on a UNIX-like host, they can userlogin which
avoids the prompt for the username. If no password
demanded, the invocation is not interactive. This ma
seem to be a convenience, but is really a necess
when scripts are invoked by other scripts, backgrou
processes, or in other situations where the user is
conveniently available to answer the prompts.

For instance, in heterogenous environments, users
not necessarily depend on the presence ofrlogin .
The rlogin program simply is not available from
many PCs and Macs for example.

Many programs designed to operate on the hetero
nous Internet stick to the lowest common denominat
for communications functionality. For example
Mosaic and Gopher are information systems th
follow links of information that may lead from one
machine to another.1 The Gopher daemon does no
support the ability to run interactive programs. Fo
instance, suppose you have atelnet interface (using
the normaltelnetd) to a valuable resource such as
database. You can make it available through Goph
but only in an uncontrolled way. The Gopher daemo
is incapable of running interactive processes itself so
passes thetelnet information to the Gopher client.
Then it is up to the Gopher client to runtelnet and
log in.

This means that the client system has to do someth
with the account information. By default, the Gophe
client displays the information on the screen and as
users to type it back in. Besides being redundant, th
interaction means that accounts and passwords
necessarily exposed to users. Unfortunately, Goph

1.While the Mosaic interface is different than
Gopher, both have the same restrictions on han-
dling interactive processes and both can take
advantage of the approach described here.

or
ent
e

ng
to
on
ad

e

to
t

e

al
u
a

–
g
rd
clients cannot perform interaction automation. And
even if they could, the accounts and passwords would
still be made available to the Gopher client. By
substituting their own Gopher client, users could
obtain the passwords and then interact by hand, doing
things you (as the advertiser of the service) may not
want.

One solution is to use the technique I described in the
previous section but modified specifically to run as a
telnet daemon. telnet itself does not demand any
account or password, so security is entirely up to the
daemon. It is possible to make a non-interactive script
simply by not querying for accounts or passwords. A
trivial Expect script to run a non-interactive program
as a daemon takes no special adaptation. The script
merely handles the passwords as before and then runs
the program. The client’s invocation becomes simply:
telnet host service

Unfortunately, invocation of interactive programs
demands more work becausetelnet clients default
to communications with rather peculiar characteris-
tics. Characters are echoed locally and not sent until a
carriage-return is entered. Carriage-returns are
received by the daemon with a linefeed appended.
This peculiar character handling has nothing to do
with cooked or raw mode. In fact, there is no terminal
interface betweentelnet andtelnetd .

This translation is a by-product oftelnet itself.
telnet uses a special protocol to talk to its daemon.
If the daemon does nothing special as in the case of
the script that spawned the non-interactive applica-
tion), telnet assumes these peculiar characteristics.
Unfortunately, they are inappropriate for most interac-
tive applications. For example, the following Expect
script will not work correctly as a daemon:
spawn /bin/sh
interact

Fortunately, a telnet daemon can modify the
behavior of telnet . A telnet client and daemon
communicate using an interactive asynchronous
protocol. An implementation of atelnet daemon in
Expect is short and efficient. The basic idea is to
make sure that the daemon is always ready to respond
to telnet commands at all times. This is easily
accomplished with anexpect_before statement.
expect_before provides patterns that are tested
before any explicit patterns. Thus, they do not have to
be repeated for eachexpect command in an
interaction.

A fragment of the Expect dialogue to handle the
telnet protocol is shown below. Variables such as
IAC contain the relevant protocol values. The script
begins by offering to do echoing instead of the local
client. SGA is also offered. SGA (Suppress Go
Ahead) means that communication is asynchronous
instead of synchronous. The script also offers to
support the terminal type.

send "IACWILL$ECHO"
send "IACWILL$SGA"
send "IACDO$TTYPE"

The expect_before command defines actions for
each command that can be sent from the client. F
instance, the first pattern matches an acknowledgm
by the client that the server should do echoing. Th
second pattern is similar but for SGA. The third
pattern refuses requests from the client to do anythi
else. The last pattern matches the offer by the client
send the terminal type. In response, the daem
acknowledges by requesting that the client go ahe
and send the information.
expect_before {

-re "^IACDO$ECHO" {
accept as acknowledgment
exp_continue

}
-re "^IACDO$SGA" {

accept as acknowledgment
exp_continue

}
-re "^IACDO\(.)" {

refuse anything else
send_user \

"IACWONT$expect_out(1,string)"
exp_continue

}
-re "^IACWILL$TTYPE" {

respond to acknowledgment
send_user \

 "IACSB$TTYPE$SENDIACSE"
exp_continue

}

This is not a complete definition to handle the entir
telnet protocol, but it suffices to give the flavor of
it. Indeed, there are near a dozen extensions
telnet and more are added frequently. Mos
telnet daemons do not handle most of thetelnet
protocol commands. A richer implementation of th
protocol is shown in [Libes94].

Once the protocol handling is defined, a more typic
Expect script can follow. As an example, suppose yo
want to let people log into another host – such as
commercial service for which you pay real money
and run a single program there but without knowin
which host it is or what your account and passwo
are. Then, the server would spawn atelnet (or tip
or whatever) to the other host.
log_user 0 ;# turn output off
spawn telnet secrethost
expect "Username:"
send "8234,34234\r"
expect "Password"
send "jellyroll\r"
expect "% "
send "ncic\r"

e
ve

g

all

s

at
r
e

ter
to
es
to

-
e
g
ll-

h-
a
al

-
fy
ns
g

ue
re
er

se
ot
ch-
lt
expect -re "ncic\r\n(.*)"
log_user 1 ;# turn output on
 ;# send anything that

;# appeared just after
 ;# command was echoed
send_user "$expect_out(1,string)

Additional protocol commands can be exchanged at
any time, however in practice, none of the earlier ones
ever reoccur. Thus, they can be removed. The
protocol negotiation typically takes place very
quickly, so the patterns can be deleted after the first
expect command that waits for real user data.
expect_before -i $user_spawn_id

One data transformation that cannot be disabled is that
the telnet client appends a null character to every
return character sent by the user. This can be handled
in a number of ways. The following command does it
within an interact command which is what the
script might end with.
interact "\r" {

send "\r"
expect_user null

}

Additional patterns can be added to look for
commands or real user data, but this suffices in the
common case where the user ends up talking directly
to the process on the remote host.

Ultimately, the connection established by the Expect
daemon resembles what is shown in figure 2. Notice
that the usualtelnet daemon,telnetd , is not part
of the figure. Rather, the Expect script plays the role
of the daemon. Similarly, the pty and the interactive
process replace the pty and login shell normally allo-
cated and created by thetelnet daemon.

The daemon could then do any operation involving
passwords. For instance, the daemon couldtelnet to
yet another host. But in this case the user would get
only what the intermediate server allowed. By
controlling the dialogue from the server rather than the
client, passwords and other sensitive pieces of infor-
mation do not have a chance of being exposed. There
is no way for the user to get information from the
server if the server does not supply it. Another advan-
tage is that the server can do much more sophisticated
processing. The server can shape the conversation

using all the power of Expect. Without Expect, th
user has full access to the spawned interacti
program.

In practice, elements of the earlier script (containin
the longexpect_before definition) can be stored in
another file that is sourced as needed. For instance,
of the commands starting with thetelnet protocol
definitions down to the bareexpect command could
be stored in a file (say,expectd.proto) and sourced
by a number of similar servers.

xinetd [Tsirigotis92], a freely-available version of
inetd provides control on the basis of hosts/network
and time-of-day over access to the services.xinetd
is strongly recommended overinetd .

Summary and Conclusion

Shell scripts and redirection are so easy to use th
users ignore the fact that they provide no reliability o
security when it comes to handling passwords in th
background. Even users who practice “safe compu
sex” in other ways, are negligent when it comes
automation of interactive processes. This paper hop
to enlighten users and save them from the holes in
which they will inevitably fall if they stick to the tools
and techniques of the past.

The solutions outlined here avoid the historic prob
lems with automating interactive processes in th
background. The first two techniques avoid supplyin
passwords from the command-line (avoiding the we
known “ps ” hole) or from files (avoiding the “look at
the backup tape” and other holes). The last two tec
niques store cleartext passwords in files but in such
way that they are inaccessible yet usable by norm
users.

Expect-style scripting also offers the ability of reli
able control over processes. Scripts can veri
responses and can retry or take alternative actio
upon failure or unexpected results. When dealin
with users, scripts can also shape the dialog
showing users only parts of the dialogue that a
appropriate, or making substitutions in what the us
sees.

Expect has been available for several years, yet the
techniques are non-intuitive, and for this reason, n
known. This paper has shown that each of these te
niques requires only a few lines of code with the resu
telnet Expect interactivepty

local host remote host

script process

Figure 2: Expect Playing the Role of Telnet Daemon

,

-

y

s
,
-

-
-

t
.
.

er

l

that interactive background processes can be auto-
mated with security and reliability.

All of the tools mentioned in this paper are freely
available and widely portable.

Availability

Since the design and implementation of this software
was paid for by the U.S. government, it is in the public
domain. However, the author and NIST would appre-
ciate credit if this software, documentation, ideas, or
portions of them are used.

The scripts and programs described in this document
may be ftp ’d as pub/expect/expect.tar.Z 1

from ftp.cme.nist.gov . The software will be
mailed to you if you send the mail message “send
pub/expect/expect.tar.Z ” (without quotes) to
library@cme.nist.gov .

Acknowledgments

Portions of this work were inspired by Sandy Ressler
and the NIST Virtual Library Project, and funded by
the NIST Scientific and Technical Research Services.

Thanks to W. Richard Stevens, Henry Spencer,
Bennett Todd, Miguel Angel Bayona, Brent Welch,
Danny Faught, Paul Kinzelman, Barry Johnston, Rob
Huebner, Todd Bradfute, Jeff Moore, Sandy Ressler,
Carolyn Rowland and Susan Mulroney for providing
suggestions that greatly enhanced the readability of
this paper.

Author Information

Don Libes is a computer scientist at the National Insti-
tute of Standards and Technology where he does
research related to interaction automation and occa-
sionally logs in as root to “fix things” much to the
consternation of the real system administrators there.
For the development of Expect, he received the Inter-
national Communications Association Innovation
Award and the Federal 100 Award. He has written
over 85 papers and articles as well as two books:Life
With UNIX (co-author Sandy Ressler, publisher Pren-
tice-Hall) and Obfuscated C and Other Mysteries
(Wiley). He is presently working on a book called
Exploring Expect: A Tcl-Based Toolkit for Auto-
mating Interactive Programs(O’Reilly). He can be
reached at libes@nist.gov.

References

[Caffrey92] Paul Caffrey, “User Interfaces and Auto-
mating Computer Human Interaction”, MSc.
Thesis, Amdahl Ireland Ltd., 1992.

[Dichter93] Carl Dichter, “Surviving Software Test-
ing”, UNIX Review, pp. 29-36, V11, #2, Feb-
ruary 1993.

[Garfinkel91] Simson Garfinkel and Gene Spafford
Practical UNIX Security, O’Reilly & Associ-
ates, Inc., June 1991.

[Libes90] Don Libes, “Expect: Curing Those Uncon
trollable Fits of Interaction”,Proceedings of
the Summer 1990 USENIX Conference, pp.
183-192, Anaheim, CA, June 11-15, 1990.

[Libes91] Don Libes, “Expect: Scripts for Controlling
Interactive Programs”,Computing Systems,
pp. 99-126, Vol. 4, No. 2, University of Cali-
fornia Press Journals, CA, Spring 1991.

[Libes93] Don Libes, “Kibitz – Connecting Multiple
Interactive Programs Together”,Software –
Practice & Experience, John Wiley & Sons,
West Sussex, England, Vol. 23, No. 5, Ma
1993.

[Libes94] Don Libes,Exploring Expect: A Tcl-based
Toolkit for Automating Interactive Programs,
O’Reilly & Associates, Inc., to appear.

[Miller87] S. P. Miller, B. C. Neuman, J. I. Schiller,
and J. H. Saltzer, “Section E.2.1: Kerbero
Authentication and Authorization System”
M.I.T. Project Athena, Cambridge, Massa
chusetts, December 21, 1987.

[Morrison92] Brad Morrison & Karl Lehenbauer, “Tcl
and Tk: Tools for the System Administrator”,
1992 LISA VI Proceedings, Long Beach, CA
October 19-23, 1992.

[Nieusma] Jeff Nieusma and David Hieb, “sudo” man
ual page, The Root Group, Boulder, CO, un
dated.

[Ousterhout94] John K Ousterhout,Tcl and the Tk
Toolkit, Addison-Wesley, April 1994.

[Schwartz90] Randal Schwartz, “Expect.pl”, Usene
article id 1990Nov2.003228.22744@iwarp
intel.com, comp.lang.perl, November 2, 1990

[Stevens92] W. Richard Stevens,Advanced Program-
ming in the UNIX Environment, Addison-
Wesley, pp. 635, 653-655, 716, Septemb
1992.

[Tsirigotis92] Panagiotis Tsirigotis, “xinetd” manua
page, University of Colorado, 1992.

1. The “.Z” file is compressed. A “.gz” version is
also available which is gzipped.

	Introduction
	Expect – An Overview
	Technique 1: In the Foreground, Prompt For Passwords Ahead Of Time
	Technique 2: From the Background, Prompt For Passwords When Needed
	Technique 3: Protect Cleartext Passwords in Scripts by Permission
	Technique 4: Protect Cleartext Passwords in Scripts by Login
	Technique 5: Protect Cleartext Passwords in Scripts by Using Daemons

	Summary and Conclusion
	Availability
	Acknowledgments
	Author Information
	References
	Handling Passwords with Security and Reliability in Background Processes
	ABSTRACT

