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Expect – Why?

• A tool for automating interactive programs
• tip, telnet, ftp, passwd, su, rogue . . .

% telnet medlib.iaims.georgetown.edu

Trying 141.161.42.1 ...

Connected to medlib.iaims.georgetown.edu.

Escape character is ‘^]’.

UNIX(r) System V Release 4.0 (medlib)

login: medlib

Enter Your Last Name: mulroney

Password: XXXXXXXX

         ... menu ...

Enter a number or Q to QUIT: 4
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Talk Overview

• Motivation

• Basics, Examples

• Patterns and Actions

• Autoexpect

• Total automation vs partial automation

• Converting line-oriented apps to window-apps

• Background: CGI, cron, etc

• Security

• Esoterica

• URLs and other pointers
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Expect Commands Are Simp

• Start an interactive process

spawn ftp tribble.cme.nist.gov

• Send a string

send "dir\r"

send "get $file\r"

• Wait for a response

expect "Password:"

expect "200*ftp>"

• Pass control from script to user

interact
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Example – /bin/passwd

spawn /bin/passwd $user

expect "Password:"

send "$password\r"

expect "Password:"

send "$password\r"

expect eof
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Another Example: Dial a Mode

• Connecting to a remote site through a modem

spawn tip modem

expect "connected"

send "ATZ\r"

expect "OK"

send "ATD1234567\r"

expect "CONNECT"

send "\r\r"

expect "login:"

send "library\r"

interact
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Tcl – A Scripting Language

• Tcl: a shell-like extensible interpreter by Oust
1990 USENIX.  Example:

set temperature 20

if {$temperature < 50} {

puts "It’s pretty cold."

} elseif {$temperature > 70} {

puts "It’s really hot."

} else {

puts "It feels like spring!"

}
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A While Loop

while {$temperature < 60} {

puts "$temperature is still chilly!"

heat 10 min

}

puts "Ah, that’s warm enough."

• break: break out of a while loop

• continue: continue a while loop from the begin

• return: return from this procedure
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More Password Automation

• Changing passwords on accounts on multiple

foreach host $hostlist {

spawn rlogin $host

expect "$prompt"

send "/bin/passwd\r"

expect "Old password:"

send "$oldpass\r"

. . .

}

• Actual script is parameterized
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Passmass – Already Written

• Handles different access methods (telnet, rlog

• Handles different password programs (passw

• Handles different user names, prompts, host 

• No special knowledge of daemons, password
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In The Same Way . . .

• Expect easily controls:
• VMS systems
• Printers
• Modems
• Pagers
• Routers
• Servers
• Black boxes
• ...and more

• Expect is also useful for testing
• Software
• Hardware
• Test Suites: Cygnus (DejaGnu), X/Open, VSC4 (test suite
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Actions

• Tcl’s if command has an action

if {$temp == 100} {puts "It’s really hot!"}

if {$temp == 100} {

puts "It’s really hot!"

}

• Expect’s action work the same way

expect "100" {puts "It’s really hot!}

expect "100" {

puts "It’s really hot!

}



13
Expect: Introduction and Overview Don Libes

Pattern/Action

expect "pattern" action "pattern" action

expect {

"pattern1" action1

"pattern2" action2

"pattern3" {

action3a

action3b

action3c

}

}
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Waiting For Different Respons

expect {

"does not exist" exit

"password: " {

send "$password\r"

# more stuff can done here

}

}

• Actions can include expect commands

• Simple actions do not need braces, example:



15

– part 2

s

Expect: Introduction and Overview Don Libes

Waiting For Different Responses 

• Host equivalencing produces different prompt

expect {

"$shellprompt" {

send "/bin/passwd\r"

}

"Password:" {

send "$password\r"

exp_continue

}
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More On Patterns

• Prompts can include variables

expect "$shellprompt"

• Glob patterns (Shell-style)

expect -gl "catch a falling *"

• Regular expressions

expect -re "(login|Username):"

• Exact strings

expect -ex "catch a falling *"
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Mixed patterns

expect {
-re "3.*ftp>" action3

-re "2.*ftp>" action2

-gl "ftp>" actionDefault

}

• Expect’s internal pattern matching strategy is
• Loop until match
• Match patterns in order
• Idle while waiting for more input

• Expect is event-loop compliant
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Anchors

• ^ matches the beginning of the buffer

• $ matches the end of the buffer

• Valid for -gl and -re

• Not for -ex
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Keywords

expect eof action

expect timeout action

set timeout 60

set timeout -1  ;# no timeout

• These are implicit in every expect command. 

expect "foo"
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Timeout Example

• Host equivalencing produces different prompt

expect {

"$shellprompt" {

send "/bin/passwd\r"

}

"Password:" {

send "$password\r"

exp_continue

}

timeout {

puts "timed out!"

continue

}
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Alternatives To Expect

• Automating passwd – the hacker approach
• Get source (if possible) and modify command-line argume
• If no source...
•    Encrypt passwords
•    Lock/read/write password database
• God forbid any of these change
•    NIS
•    Kerberos
•    Shadow passwords
• Rechange, retest, redebug...

• Expect – the solution for the rest of us

• Re-usable on passwd, telnet, others
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Partial Automation

• Sometimes, it is inappropriate to totally autom

spawn telnet $host

expect "login:"    {send "$name\r"}

expect "Password:" {send "$password\r"}

expect "$prompt"   {send "cd $dir\r"}

interact

• interact works in both directions
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Example: fsck, The File System C

• fsck: a typical vital program with a poor interfa
• fsck -y   or  fsck -n    (that’s it for programmability!)

while {1} {

expect {

eof bre

-re "UNREF FILE.*CLEAR.*?" {send"

-re "BAD INODE.*FIX.*?" {send "n

-re "? " {intera

}

}
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Interact patterns/actions

interact pattern action pattern actio

while {1} {

expect {

eof bre

-re "UNREF FILE.*CLEAR.*?" {send"

-re "BAD INODE.*FIX.*?" {send "n

-re "? " {

interact "+" return

}

}

}
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Example: Adding Commands To

• Better than fsck in terms of programmability
• But not much!  No reliability.

interact {

"~g\r" {get_current_directory}

"~p\r" {put_current_directory}

"~l\r" {list_current_directory}

}
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list_current_directory

proc list_current_directory {} {

send "dir\r"

# expect commands to read directory

foreach file $list {

if {$isdirectory} {

send "cd $file\r"

list_current_directory

send "cd ..\r"

}

}

}
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Feedback

• expect_out contains results of a match

• expect_out(buffer) contains entire match plus

• expect_out(0,string) contains entire match

• expect_out(1,string) contains submatch 1

• expect_out(2,string) contains submatch 2

• expect_out(3,string) . . .

• and so on

expect -re "a*((ab)*|b*)"
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Feedback example

expect {

"ld password:" {

send "$oldpass\r"

} "assword*:" {

send "$newpass\r"

} -re "(.*)\n" {

showerr "$expect_out(1,string)"

} eof {
showerr "passwd died unexpecte

}
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Lots of Other Features

• Global patterns
• expect_before
• expect_after

• Multiple processes
• Example: testing two programs
• Example: program1 -> program2 -> program1
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Tk — An X11 Extension To T

• Tk commands are simple

• Buttons

button $gbut -text "Get File" -command get

button $pbut -text "Put File" -command put

• Bindings

bind $window <Button3> swap-directory

• Lots of other widgets, Motif-style
• Window
• Scrollbar
• Radio button
• Check button
• Canvas
• Etc

Get 

Put 
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Expectk – Script Driven

• Add scrollbars, buttons, etc. to existing progra

• Or completely cover them up.

• No changes are required to original programs
• Ergo, no testing of changes is necessary.

ori
pro

TkExpect

Tcl Xlib

Expectk

script
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Example – tkpasswd – A Tk GUI for
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tkpasswd — Performance Metr
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How To Avoid Learning Expec

• Autoexpect – Watches you interact and gener

interactive processes

gen
Exp
scrip
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Usage

• Similar in feel to the “script” command:

% script

script started, file is typescript

    ... interact ...

script done, file is typescript

%

% autoexpect

autoexpect started, file is script.exp

    ... interact ...

autoexpect done, file is script.exp

%
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No guarantees

• Autoexpect has to guess about certain things
• Timing
• Changing Behavior

• Occasionally it guesses wrong
• But these spots are easy to fix

• It actually does a very good job
• has some neat heuristics
• even experts use it

• Good news
• very easy to use
• free & well documented
• nothing easier

• Bad news
• You have to stop what you’re doing
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Character graphic automation

• xterm
• send: output appears in xterm for user to see
• expect: reads user keystrokes
• xterm itself takes care of everything else: character graph
• good for applications that demand an xterm

• tkterm
• Expect and Tk take care of everything
• essentially a terminal widget
• with enhanced expect command
• good for Curses-based applications

• For most applications, tkterm is the way to go
• much more flexible
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Background

• Expect works fine in the background

• cron, at, batch

• CGI

• Telnet daemon

• Storing passwords in scripts

• Not storing passwords in scripts

• Storing passwords in scripts anyway
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CGI

• http://expect.nist.gov/cgi.tcl
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Backend CGI Script

cgi_title "Password Change Acknowledgmen

cgi_import name

cgi_import old

cgi_import new1

cgi_import new2

spawn /bin/passwd $name

expect "Old password:"

send $old

expect "New password:"

send $new1

expect "New password:"

send $new2

puts "Password Changed!"
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Passwords in Scripts

• Generally bad
• but so useful
• easy to avoid in Expect



42
Expect: Introduction and Overview Don Libes

Prompt at start-up

# prompt user for password

set password [getpass]

# go into background

if {[fork]} exit

disconnect

# everything hereafter is in background

sleep ...

spawn telnet ...

expect ...

send ...
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Variations

• Example: password unknown to script or cha

while {1} {

send "$password\r"

expect {

"sorry" {

find-human

set passwd [getpass-from-hum

}

"$prompt" break

}

}
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Telnet Daemon

• Secure scripts can be done with file permissio

• More secure with physically secure machines
• put in locked room
• turn off all daemons

• Expect script as telnet daemon
• Users telnet to secure machine which then supplies passw
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Widely Used

“Expect has become a necessary tool for system administr
we have used Expect in six areas and have cut out seven h
and repetitive tasks.”
—Thomas Naughton, Hull Trading Company

“Expect is a lifesaver for a project that I am currently involve
been working with Expect for the last couple of days, but it
about 6 months off of the completion time of the project.”
—Ron Young, System Computing Services, University of Nevada

“Thanks for making my life easier. This program has really
the cycle time for software Q.A. Expect is like a dream com
tion. My productivity has really increased.”
—Brian F. Woodson, 3Com NSD Software Q.A.

“Thanks for Expect. It just made an impossible project pos
—Bruce Barnett, GE Corporate Research and Development Center

“I figure we saved about $35K last year (Jan-Dec94) that w
able to Expect.  The indirect benefits drive that figure to m
—John Pierce, Chem Dept, UC San Diego
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Expect Is Freely Available

• Easy to get
• Cost: Free
• URL: http://expect.nist.gov

• Easy to install
• Portable
• UNIX: GNU-style configure
• Windows: ports from Cygnus and Berkeley
• Mac: sorry

• Well documented
• Numerous published papers
• Comprehensive man pages
• Exploring Expect (O’Reilly), ISBN: 1-56592-090-2

• Commercial Support Available
• Scriptics
• Cygnus Software
• Computerized Processes Unlimited
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	• Wait for a response
	expect "Password:"
	expect "200*ftp>"

	• Pass control from script to user
	interact


	Example – /bin/passwd
	spawn /bin/passwd $user
	expect "Password:"
	send "$password\r"
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	Expectk – Script Driven
	• Add scrollbars, buttons, etc. to existing programs
	• Or completely cover them up.
	• No changes are required to original programs.
	• Ergo, no testing of changes is necessary.


	Example – tkpasswd – A Tk GUI for passwd
	tkpasswd — Performance Metrics
	How To Avoid Learning Expect
	• Autoexpect – Watches you interact and generates an Expect script

	Usage
	• Similar in feel to the “script” command:
	% script
	script started, file is typescript
	... interact ...
	script done, file is typescript
	%
	% autoexpect
	autoexpect started, file is script.exp
	... interact ...
	autoexpect done, file is script.exp
	%


	No guarantees
	• Autoexpect has to guess about certain things
	• Timing
	• Changing Behavior

	• Occasionally it guesses wrong
	• But these spots are easy to fix

	• It actually does a very good job
	• has some neat heuristics
	• even experts use it

	• Good news
	• very easy to use
	• free & well documented
	• nothing easier

	• Bad news
	• You have to stop what you’re doing
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	• xterm
	• send: output appears in xterm for user to see
	• expect: reads user keystrokes
	• xterm itself takes care of everything else: character graphics, select, mouse, scroll
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	cgi_import old
	cgi_import new1
	cgi_import new2
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	expect "New password:"
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	puts "Password Changed!"

	Passwords in Scripts
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	• but so useful
	• easy to avoid in Expect
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	}
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	}
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	• turn off all daemons
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	• Users telnet to secure machine which then supplies password for them
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