
1

 Technology
Expect: Introduction and Overview Don Libes

— Expect —
A Tool For Automating
Interactive Programs

Don Libes
libes@nist.gov

National Institute of Standards and

2
Expect: Introduction and Overview Don Libes

Expect – Why?

• A tool for automating interactive programs
• tip, telnet, ftp, passwd, su, rogue . . .

% telnet medlib.iaims.georgetown.edu

Trying 141.161.42.1 ...

Connected to medlib.iaims.georgetown.edu.

Escape character is ‘^]’.

UNIX(r) System V Release 4.0 (medlib)

login: medlib

Enter Your Last Name: mulroney

Password: XXXXXXXX

 ... menu ...

Enter a number or Q to QUIT: 4

3
Expect: Introduction and Overview Don Libes

Talk Overview

• Motivation

• Basics, Examples

• Patterns and Actions

• Autoexpect

• Total automation vs partial automation

• Converting line-oriented apps to window-apps

• Background: CGI, cron, etc

• Security

• Esoterica

• URLs and other pointers

4

le
Expect: Introduction and Overview Don Libes

Expect Commands Are Simp

• Start an interactive process

spawn ftp tribble.cme.nist.gov

• Send a string

send "dir\r"

send "get $file\r"

• Wait for a response

expect "Password:"

expect "200*ftp>"

• Pass control from script to user

interact

5
Expect: Introduction and Overview Don Libes

Example – /bin/passwd

spawn /bin/passwd $user

expect "Password:"

send "$password\r"

expect "Password:"

send "$password\r"

expect eof

6

m

Expect: Introduction and Overview Don Libes

Another Example: Dial a Mode

• Connecting to a remote site through a modem

spawn tip modem

expect "connected"

send "ATZ\r"

expect "OK"

send "ATD1234567\r"

expect "CONNECT"

send "\r\r"

expect "login:"

send "library\r"

interact

7

erhout, Winter
Expect: Introduction and Overview Don Libes

Tcl – A Scripting Language

• Tcl: a shell-like extensible interpreter by Oust
1990 USENIX. Example:

set temperature 20

if {$temperature < 50} {

puts "It’s pretty cold."

} elseif {$temperature > 70} {

puts "It’s really hot."

} else {

puts "It feels like spring!"

}

8

ning
Expect: Introduction and Overview Don Libes

A While Loop

while {$temperature < 60} {

puts "$temperature is still chilly!"

heat 10 min

}

puts "Ah, that’s warm enough."

• break: break out of a while loop

• continue: continue a while loop from the begin

• return: return from this procedure

9

 machines
Expect: Introduction and Overview Don Libes

More Password Automation

• Changing passwords on accounts on multiple

foreach host $hostlist {

spawn rlogin $host

expect "$prompt"

send "/bin/passwd\r"

expect "Old password:"

send "$oldpass\r"

. . .

}

• Actual script is parameterized

10

!

in, etc.)

d, yppasswd)

equivalencing

 formats, encryption
Expect: Introduction and Overview Don Libes

Passmass – Already Written

• Handles different access methods (telnet, rlog

• Handles different password programs (passw

• Handles different user names, prompts, host

• No special knowledge of daemons, password

11

 for XPG), NIST
Expect: Introduction and Overview Don Libes

In The Same Way . . .

• Expect easily controls:
• VMS systems
• Printers
• Modems
• Pagers
• Routers
• Servers
• Black boxes
• ...and more

• Expect is also useful for testing
• Software
• Hardware
• Test Suites: Cygnus (DejaGnu), X/Open, VSC4 (test suite

12
Expect: Introduction and Overview Don Libes

Actions

• Tcl’s if command has an action

if {$temp == 100} {puts "It’s really hot!"}

if {$temp == 100} {

puts "It’s really hot!"

}

• Expect’s action work the same way

expect "100" {puts "It’s really hot!}

expect "100" {

puts "It’s really hot!

}

13
Expect: Introduction and Overview Don Libes

Pattern/Action

expect "pattern" action "pattern" action

expect {

"pattern1" action1

"pattern2" action2

"pattern3" {

action3a

action3b

action3c

}

}

14

es

 exit
Expect: Introduction and Overview Don Libes

Waiting For Different Respons

expect {

"does not exist" exit

"password: " {

send "$password\r"

more stuff can done here

}

}

• Actions can include expect commands

• Simple actions do not need braces, example:

15

– part 2

s

Expect: Introduction and Overview Don Libes

Waiting For Different Responses

• Host equivalencing produces different prompt

expect {

"$shellprompt" {

send "/bin/passwd\r"

}

"Password:" {

send "$password\r"

exp_continue

}

16
Expect: Introduction and Overview Don Libes

More On Patterns

• Prompts can include variables

expect "$shellprompt"

• Glob patterns (Shell-style)

expect -gl "catch a falling *"

• Regular expressions

expect -re "(login|Username):"

• Exact strings

expect -ex "catch a falling *"

17

 intuitive
Expect: Introduction and Overview Don Libes

Mixed patterns

expect {
-re "3.*ftp>" action3

-re "2.*ftp>" action2

-gl "ftp>" actionDefault

}

• Expect’s internal pattern matching strategy is
• Loop until match
• Match patterns in order
• Idle while waiting for more input

• Expect is event-loop compliant

18
Expect: Introduction and Overview Don Libes

Anchors

• ^ matches the beginning of the buffer

• $ matches the end of the buffer

• Valid for -gl and -re

• Not for -ex

19

Consider:
Expect: Introduction and Overview Don Libes

Keywords

expect eof action

expect timeout action

set timeout 60

set timeout -1 ;# no timeout

• These are implicit in every expect command.

expect "foo"

20

s

Expect: Introduction and Overview Don Libes

Timeout Example

• Host equivalencing produces different prompt

expect {

"$shellprompt" {

send "/bin/passwd\r"

}

"Password:" {

send "$password\r"

exp_continue

}

timeout {

puts "timed out!"

continue

}

21

nt handling.
Expect: Introduction and Overview Don Libes

Alternatives To Expect

• Automating passwd – the hacker approach
• Get source (if possible) and modify command-line argume
• If no source...
• Encrypt passwords
• Lock/read/write password database
• God forbid any of these change
• NIS
• Kerberos
• Shadow passwords
• Rechange, retest, redebug...

• Expect – the solution for the rest of us

• Re-usable on passwd, telnet, others

22

ate
Expect: Introduction and Overview Don Libes

Partial Automation

• Sometimes, it is inappropriate to totally autom

spawn telnet $host

expect "login:" {send "$name\r"}

expect "Password:" {send "$password\r"}

expect "$prompt" {send "cd $dir\r"}

interact

• interact works in both directions

23

hecker

ce

ak

y\r"}

\r"}

ct}
Expect: Introduction and Overview Don Libes

Example: fsck, The File System C

• fsck: a typical vital program with a poor interfa
• fsck -y or fsck -n (that’s it for programmability!)

while {1} {

expect {

eof bre

-re "UNREF FILE.*CLEAR.*?" {send"

-re "BAD INODE.*FIX.*?" {send "n

-re "? " {intera

}

}

24

n . . .

ak

y\r"}

\r"}
Expect: Introduction and Overview Don Libes

Interact patterns/actions

interact pattern action pattern actio

while {1} {

expect {

eof bre

-re "UNREF FILE.*CLEAR.*?" {send"

-re "BAD INODE.*FIX.*?" {send "n

-re "? " {

interact "+" return

}

}

}

25

 ftp
Expect: Introduction and Overview Don Libes

Example: Adding Commands To

• Better than fsck in terms of programmability
• But not much! No reliability.

interact {

"~g\r" {get_current_directory}

"~p\r" {put_current_directory}

"~l\r" {list_current_directory}

}

26
Expect: Introduction and Overview Don Libes

list_current_directory

proc list_current_directory {} {

send "dir\r"

expect commands to read directory

foreach file $list {

if {$isdirectory} {

send "cd $file\r"

list_current_directory

send "cd ..\r"

}

}

}

27

 things skipped
Expect: Introduction and Overview Don Libes

Feedback

• expect_out contains results of a match

• expect_out(buffer) contains entire match plus

• expect_out(0,string) contains entire match

• expect_out(1,string) contains submatch 1

• expect_out(2,string) contains submatch 2

• expect_out(3,string) . . .

• and so on

expect -re "a*((ab)*|b*)"

28

dly"
Expect: Introduction and Overview Don Libes

Feedback example

expect {

"ld password:" {

send "$oldpass\r"

} "assword*:" {

send "$newpass\r"

} -re "(.*)\n" {

showerr "$expect_out(1,string)"

} eof {
showerr "passwd died unexpecte

}

29
Expect: Introduction and Overview Don Libes

Lots of Other Features

• Global patterns
• expect_before
• expect_after

• Multiple processes
• Example: testing two programs
• Example: program1 -> program2 -> program1

30

cl

File

File
Expect: Introduction and Overview Don Libes

Tk — An X11 Extension To T

• Tk commands are simple

• Buttons

button $gbut -text "Get File" -command get

button $pbut -text "Put File" -command put

• Bindings

bind $window <Button3> swap-directory

• Lots of other widgets, Motif-style
• Window
• Scrollbar
• Radio button
• Check button
• Canvas
• Etc

Get

Put

31

ms

.

ginal
cess
Expect: Introduction and Overview Don Libes

Expectk – Script Driven

• Add scrollbars, buttons, etc. to existing progra

• Or completely cover them up.

• No changes are required to original programs
• Ergo, no testing of changes is necessary.

ori
pro

TkExpect

Tcl Xlib

Expectk

script

32

 passwd
Expect: Introduction and Overview Don Libes

Example – tkpasswd – A Tk GUI for

33

ics

passwd

ort

rand

aries

password
databases

help
Expect: Introduction and Overview Don Libes

tkpasswd — Performance Metr

s

diction

34

t

ates an Expect script

erated
ect
t

Expect: Introduction and Overview Don Libes

How To Avoid Learning Expec

• Autoexpect – Watches you interact and gener

interactive processes

gen
Exp
scrip

35
Expect: Introduction and Overview Don Libes

Usage

• Similar in feel to the “script” command:

% script

script started, file is typescript

 ... interact ...

script done, file is typescript

%

% autoexpect

autoexpect started, file is script.exp

 ... interact ...

autoexpect done, file is script.exp

%

36
Expect: Introduction and Overview Don Libes

No guarantees

• Autoexpect has to guess about certain things
• Timing
• Changing Behavior

• Occasionally it guesses wrong
• But these spots are easy to fix

• It actually does a very good job
• has some neat heuristics
• even experts use it

• Good news
• very easy to use
• free & well documented
• nothing easier

• Bad news
• You have to stop what you’re doing

37

ics, select, mouse, scroll
Expect: Introduction and Overview Don Libes

Character graphic automation

• xterm
• send: output appears in xterm for user to see
• expect: reads user keystrokes
• xterm itself takes care of everything else: character graph
• good for applications that demand an xterm

• tkterm
• Expect and Tk take care of everything
• essentially a terminal widget
• with enhanced expect command
• good for Curses-based applications

• For most applications, tkterm is the way to go
• much more flexible

38
Expect: Introduction and Overview Don Libes

Background

• Expect works fine in the background

• cron, at, batch

• CGI

• Telnet daemon

• Storing passwords in scripts

• Not storing passwords in scripts

• Storing passwords in scripts anyway

39
Expect: Introduction and Overview Don Libes

CGI

• http://expect.nist.gov/cgi.tcl

40

t"
Expect: Introduction and Overview Don Libes

Backend CGI Script

cgi_title "Password Change Acknowledgmen

cgi_import name

cgi_import old

cgi_import new1

cgi_import new2

spawn /bin/passwd $name

expect "Old password:"

send $old

expect "New password:"

send $new1

expect "New password:"

send $new2

puts "Password Changed!"

41
Expect: Introduction and Overview Don Libes

Passwords in Scripts

• Generally bad
• but so useful
• easy to avoid in Expect

42
Expect: Introduction and Overview Don Libes

Prompt at start-up

prompt user for password

set password [getpass]

go into background

if {[fork]} exit

disconnect

everything hereafter is in background

sleep ...

spawn telnet ...

expect ...

send ...

43

nged

an]
Expect: Introduction and Overview Don Libes

Variations

• Example: password unknown to script or cha

while {1} {

send "$password\r"

expect {

"sorry" {

find-human

set passwd [getpass-from-hum

}

"$prompt" break

}

}

44

ns

ord for them
Expect: Introduction and Overview Don Libes

Telnet Daemon

• Secure scripts can be done with file permissio

• More secure with physically secure machines
• put in locked room
• turn off all daemons

• Expect script as telnet daemon
• Users telnet to secure machine which then supplies passw

45

ation. In a short time,
ours a week in tedious

d with. I have only
 has already shaved

 helped me shorten
e true for automa-

sible.”

as directly attribut-
ore like $75K.”
Expect: Introduction and Overview Don Libes

Widely Used

“Expect has become a necessary tool for system administr
we have used Expect in six areas and have cut out seven h
and repetitive tasks.”
—Thomas Naughton, Hull Trading Company

“Expect is a lifesaver for a project that I am currently involve
been working with Expect for the last couple of days, but it
about 6 months off of the completion time of the project.”
—Ron Young, System Computing Services, University of Nevada

“Thanks for making my life easier. This program has really
the cycle time for software Q.A. Expect is like a dream com
tion. My productivity has really increased.”
—Brian F. Woodson, 3Com NSD Software Q.A.

“Thanks for Expect. It just made an impossible project pos
—Bruce Barnett, GE Corporate Research and Development Center

“I figure we saved about $35K last year (Jan-Dec94) that w
able to Expect. The indirect benefits drive that figure to m
—John Pierce, Chem Dept, UC San Diego

46
Expect: Introduction and Overview Don Libes

Expect Is Freely Available

• Easy to get
• Cost: Free
• URL: http://expect.nist.gov

• Easy to install
• Portable
• UNIX: GNU-style configure
• Windows: ports from Cygnus and Berkeley
• Mac: sorry

• Well documented
• Numerous published papers
• Comprehensive man pages
• Exploring Expect (O’Reilly), ISBN: 1-56592-090-2

• Commercial Support Available
• Scriptics
• Cygnus Software
• Computerized Processes Unlimited

	— Expect — A Tool For Automating Interactive Programs
	Expect – Why?
	• A tool for automating interactive programs
	• tip, telnet, ftp, passwd, su, rogue . . .
	% telnet medlib.iaims.georgetown.edu
	Trying 141.161.42.1 ...
	Connected to medlib.iaims.georgetown.edu.
	Escape character is ‘^]’.
	UNIX(r) System V Release 4.0 (medlib)
	login: medlib
	Enter Your Last Name: mulroney
	Password:XXXXXXXX
	... menu ...
	Enter a number or Q to QUIT: 4

	Talk Overview
	• Motivation
	• Basics, Examples
	• Patterns and Actions
	• Autoexpect
	• Total automation vs partial automation
	• Converting line-oriented apps to window-apps
	• Background: CGI, cron, etc
	• Security
	• Esoterica
	• URLs and other pointers

	Expect Commands Are Simple
	• Start an interactive process
	spawn ftp tribble.cme.nist.gov

	• Send a string
	send "dir\r"
	send "get $file\r"

	• Wait for a response
	expect "Password:"
	expect "200*ftp>"

	• Pass control from script to user
	interact

	Example – /bin/passwd
	spawn /bin/passwd $user
	expect "Password:"
	send "$password\r"
	expect "Password:"
	send "$password\r"
	expect eof

	Another Example: Dial a Modem
	• Connecting to a remote site through a modem
	spawn tip modem
	expect "connected"
	send "ATZ\r"
	expect "OK"
	send "ATD1234567\r"
	expect "CONNECT"
	send "\r\r"
	expect "login:"
	send "library\r"
	interact

	Tcl – A Scripting Language
	• Tcl: a shell-like extensible interpreter by Ousterhout, Winter 1990 USENIX. Example:
	set temperature 20
	if {$temperature < 50} {
	puts "It’s pretty cold."
	} elseif {$temperature > 70} {
	puts "It’s really hot."
	} else {
	puts "It feels like spring!"
	}

	A While Loop
	while {$temperature < 60} {
	puts "$temperature is still chilly!"
	heat 10 min
	}
	puts "Ah, that’s warm enough."
	• break: break out of a while loop
	• continue: continue a while loop from the beginning
	• return: return from this procedure

	More Password Automation
	• Changing passwords on accounts on multiple machines
	foreach host $hostlist {
	spawn rlogin $host
	expect "$prompt"
	send "/bin/passwd\r"
	expect "Old password:"
	send "$oldpass\r"
	. . .
	}

	• Actual script is parameterized

	Passmass – Already Written!
	• Handles different access methods (telnet, rlogin, etc.)
	• Handles different password programs (passwd, yppasswd)
	• Handles different user names, prompts, host equivalencing
	• No special knowledge of daemons, password formats, encryption

	In The Same Way . . .
	• Expect easily controls:
	• VMS systems
	• Printers
	• Modems
	• Pagers
	• Routers
	• Servers
	• Black boxes
	• ...and more

	• Expect is also useful for testing
	• Software
	• Hardware
	• Test Suites: Cygnus (DejaGnu), X/Open, VSC4 (test suite for XPG), NIST

	Actions
	• Tcl’s if command has an action
	if {$temp == 100} {puts "It’s really hot!"}
	if {$temp == 100} {
	puts "It’s really hot!"
	}

	• Expect’s action work the same way
	expect "100" {puts "It’s really hot!}
	expect "100" {
	puts "It’s really hot!
	}

	Pattern/Action
	expect "pattern" action "pattern" action
	expect {
	"pattern1" action1
	"pattern2" action2
	"pattern3" {
	action3a
	action3b
	action3c
	}
	}

	Waiting For Different Responses
	expect {
	"does not exist" exit
	"password: " {
	send "$password\r"
	# more stuff can done here
	}
	}
	• Actions can include expect commands
	• Simple actions do not need braces, example: exit

	Waiting For Different Responses �– part 2
	• Host equivalencing produces different prompts
	expect {
	"$shellprompt" {
	send "/bin/passwd\r"
	}
	"Password:" {
	send "$password\r"
	exp_continue
	}

	More On Patterns
	• Prompts can include variables
	expect "$shellprompt"

	• Glob patterns (Shell-style)
	expect -gl "catch a falling *"

	• Regular expressions
	expect -re "(login|Username):"

	• Exact strings
	expect -ex "catch a falling *"

	Mixed patterns
	expect { -re "3.*ftp>" action3
	-re "2.*ftp>" action2
	-gl "ftp>" actionDefault
	}
	• Expect’s internal pattern matching strategy is intuitive
	• Loop until match
	• Match patterns in order
	• Idle while waiting for more input

	• Expect is event-loop compliant

	Anchors
	• ^ matches the beginning of the buffer
	• $ matches the end of the buffer
	• Valid for -gl and -re
	• Not for -ex

	Keywords
	expect eof action
	expect timeout action
	set timeout 60
	set timeout -1 ;# no timeout
	• These are implicit in every expect command. Consider:
	expect "foo"

	Timeout Example
	• Host equivalencing produces different prompts
	expect {
	"$shellprompt" {
	send "/bin/passwd\r"
	}
	"Password:" {
	send "$password\r"
	exp_continue
	}
	timeout {
	puts "timed out!"
	continue
	}

	Alternatives To Expect
	• Automating passwd – the hacker approach
	• Get source (if possible) and modify command-line argument handling.
	• If no source...
	• Encrypt passwords
	• Lock/read/write password database
	• God forbid any of these change
	• NIS
	• Kerberos
	• Shadow passwords
	• Rechange, retest, redebug...

	• Expect – the solution for the rest of us
	• Re-usable on passwd, telnet, others

	Partial Automation
	• Sometimes, it is inappropriate to totally automate
	spawn telnet $host
	expect "login:" {send "$name\r"}
	expect "Password:" {send "$password\r"}
	expect "$prompt" {send "cd $dir\r"}
	interact

	• interact works in both directions

	Example: fsck, The File System Checker
	• fsck: a typical vital program with a poor interface
	• fsck -y or fsck -n (that’s it for programmability!)

	while {1} {
	expect {
	eof break
	-re "UNREF FILE.*CLEAR.*?" {send "y\r"}
	-re "BAD INODE.*FIX.*?" {send "n\r"}
	-re "? " {interact}
	}
	}

	Interact patterns/actions
	interact pattern action pattern action . . .
	while {1} {
	expect {
	eof break
	-re "UNREF FILE.*CLEAR.*?" {send "y\r"}
	-re "BAD INODE.*FIX.*?" {send "n\r"}
	-re "? " {
	interact "+" return
	}
	}
	}

	Example: Adding Commands To ftp
	• Better than fsck in terms of programmability
	• But not much! No reliability.
	interact {
	"~g\r" {get_current_directory}
	"~p\r" {put_current_directory}
	"~l\r" {list_current_directory}
	}

	list_current_directory
	proc list_current_directory {} {
	send "dir\r"
	# expect commands to read directory
	foreach file $list {
	if {$isdirectory} {
	send "cd $file\r"
	list_current_directory
	send "cd ..\r"
	}
	}
	}

	Feedback
	• expect_out contains results of a match
	• expect_out(buffer) contains entire match plus things skipped
	• expect_out(0,string) contains entire match
	• expect_out(1,string) contains submatch 1
	• expect_out(2,string) contains submatch 2
	• expect_out(3,string) . . .
	• and so on
	expect -re "a*((ab)*|b*)"

	Feedback example
	expect {
	"ld password:" {
	send "$oldpass\r"
	} "assword*:" {
	send "$newpass\r"
	} -re "(.*)\n" {
	showerr "$expect_out(1,string)"
	} eof { showerr "passwd died unexpectedly"
	}

	Lots of Other Features
	• Global patterns
	• expect_before
	• expect_after

	• Multiple processes
	• Example: testing two programs
	• Example: program1 -> program2 -> program1

	Tk — An X11 Extension To Tcl
	• Tk commands are simple
	• Buttons
	button $gbut -text "Get File" -command get
	button $pbut -text "Put File" -command put

	• Bindings
	bind $window <Button3> swap-directory

	• Lots of other widgets, Motif-style
	• Window
	• Scrollbar
	• Radio button
	• Check button
	• Canvas
	• Etc

	Expectk – Script Driven
	• Add scrollbars, buttons, etc. to existing programs
	• Or completely cover them up.
	• No changes are required to original programs.
	• Ergo, no testing of changes is necessary.

	Example – tkpasswd – A Tk GUI for passwd
	tkpasswd — Performance Metrics
	How To Avoid Learning Expect
	• Autoexpect – Watches you interact and generates an Expect script

	Usage
	• Similar in feel to the “script” command:
	% script
	script started, file is typescript
	... interact ...
	script done, file is typescript
	%
	% autoexpect
	autoexpect started, file is script.exp
	... interact ...
	autoexpect done, file is script.exp
	%

	No guarantees
	• Autoexpect has to guess about certain things
	• Timing
	• Changing Behavior

	• Occasionally it guesses wrong
	• But these spots are easy to fix

	• It actually does a very good job
	• has some neat heuristics
	• even experts use it

	• Good news
	• very easy to use
	• free & well documented
	• nothing easier

	• Bad news
	• You have to stop what you’re doing

	Character graphic automation
	• xterm
	• send: output appears in xterm for user to see
	• expect: reads user keystrokes
	• xterm itself takes care of everything else: character graphics, select, mouse, scroll
	• good for applications that demand an xterm

	• tkterm
	• Expect and Tk take care of everything
	• essentially a terminal widget
	• with enhanced expect command
	• good for Curses-based applications

	• For most applications, tkterm is the way to go
	• much more flexible

	Background
	• Expect works fine in the background
	• cron, at, batch
	• CGI
	• Telnet daemon
	• Storing passwords in scripts
	• Not storing passwords in scripts
	• Storing passwords in scripts anyway

	CGI
	• http://expect.nist.gov/cgi.tcl

	Backend CGI Script
	cgi_title "Password Change Acknowledgment"
	cgi_import name
	cgi_import old
	cgi_import new1
	cgi_import new2
	spawn /bin/passwd $name
	expect "Old password:"
	send $old
	expect "New password:"
	send $new1
	expect "New password:"
	send $new2
	puts "Password Changed!"

	Passwords in Scripts
	• Generally bad
	• but so useful
	• easy to avoid in Expect

	Prompt at start-up
	# prompt user for password
	set password [getpass]
	# go into background
	if {[fork]} exit
	disconnect
	# everything hereafter is in background
	sleep ...
	spawn telnet ...
	expect ...
	send ...

	Variations
	• Example: password unknown to script or changed
	while {1} {
	send "$password\r"
	expect {
	"sorry" {
	find-human
	set passwd [getpass-from-human]
	}
	"$prompt" break
	}
	}

	Telnet Daemon
	• Secure scripts can be done with file permissions
	• More secure with physically secure machines
	• put in locked room
	• turn off all daemons

	• Expect script as telnet daemon
	• Users telnet to secure machine which then supplies password for them

	Widely Used
	“Expect has become a necessary tool for system administration. In a short time, we have used Expe...
	—Thomas Naughton, Hull Trading Company

	“Expect is a lifesaver for a project that I am currently involved with. I have only been working ...
	—Ron Young, System Computing Services, University of Nevada

	“Thanks for making my life easier. This program has really helped me shorten the cycle time for s...
	—Brian F. Woodson, 3Com NSD Software Q.A.

	“Thanks for Expect. It just made an impossible project possible.”
	—Bruce Barnett, GE Corporate Research and Development Center

	“I figure we saved about $35K last year (Jan-Dec94) that was directly attributable to Expect. The...
	—John Pierce, Chem Dept, UC San Diego

	Expect Is Freely Available
	• Easy to get
	• Cost: Free
	• URL: http://expect.nist.gov

	• Easy to install
	• Portable
	• UNIX: GNU-style configure
	• Windows: ports from Cygnus and Berkeley
	• Mac: sorry

	• Well documented
	• Numerous published papers
	• Comprehensive man pages
	• Exploring Expect (O’Reilly), ISBN: 1-56592-090-2

	• Commercial Support Available
	• Scriptics
	• Cygnus Software
	• Computerized Processes Unlimited

