L.C-trie
seminar 2000 KTH

Robert Olsson

Experiments, Development and Experiences
with FIB lookup and LC-trie

Background

Been involved testing and development and
productions for many years

Contributions to Linux network stack and routing
daemons etc.

NAPI, pktgen, device drivers tulip, e1000
etc

HW testing and hi-end production systems.

What we hear/got

dst cache overflow reports
RCU related
mistuned, misunderstod etc.

fib lookup complaints
what to expect
BSD comparisons. Radix-tree
ToS/semantic questionable
current fib hash considered bad

Route hash vs tib lookup

First packet in a row takes a longer path

(slow path) goes through careful sanity inspection,
route lookup (fib lookup) and RP-checks etc.

On success a dst entry is created. This holds
intelligence how packet should traverse the
kernel stack.

Packet inside Linux kernel are stored in socket
buffers skb's. A skb has a pointer to dst entry.
dst entries are kept in the dst (route) hash.

Following packets can be lookup from dst hash
and avoid slow path with fib lookups etc.

Route hash vs tib lookup

Some stateful information is kept
in the dst cache

dst cache needs garbage collection

tuning for work load is often needed

Route hash vs tib lookup

Example from rtstat from Uppsala Universitet
core router 2006 19/4 11:30

size
95992
IN: hit tot mc no rt bcast madst masrc
444119 23836 4 2 0 0 0
OUT: hit tot mc

3903 5 0

GC: tot ignored goal miss ovrf
13896 13894 0 0

HASH: in_search out search
167418 4337

Route hash vs tib lookup

Example from rtstat from Uppsala Universitet
core router 2006 19/4 11:30

size

95992

IN: hit tot mc no_rt bcast madst masrc
444119 23836 4 2 0 0 0

hit = warm cache hit
tot = route lookup/fib lookup

Relation is very interesting. It helps monitoring
of rDoS, length of flows etc.

This minute a packet load of 444k + 24k = 468 kpps

Route hash vs tib lookup

Example from rtstat from Uppsala Universitet
core router 2006 19/4 11:30

OUT: hit tot mc
3903 5 0

Output from router. Typically router daemon
bgpd/ospf or ssh connection

Route hash vs tib lookup

Example from rtstat from Uppsala Universitet
core router 2006 19/4 11:30

GC: tot ignored goal miss ovrf
13896 13894 0 0

Garbage collection of route hash entries a very
crucial process. Needed on own semiar.

Route hash vs tib lookup

Example from rtstat from Uppsala Universitet
core router 2006 19/4 11:30

Spinning in the hash (linear search) kills
perfromance as it create cache misses.

in search = spinning caused by incoming pkts.

HASH: in_search out search
167418 4337

Policy routing

Linux can have 256 routing tables by default
and do lookup via tos, src fwmark etc

ip rule

0: from all lookup local
32766: from all lookup main
32767: from all lookup default

Create a new table

ip rule add from 130.238.122.160/27 table 200
Add deault route to table

ip route add 0/0 dev wlan0 table 200

ip rule

O: from all lookup local

32765: from 130.238.122.160/27 lookup 200
32766: from all lookup main

32767: from all lookup default

Policy routing

Linux can have 256 routing tables by default
and do lookup via tos, src fwmark etc

Route cache hides lookup cost from when many tables
are used tables. Can be improved...

Also RCU lock recently added for rule lookup.

Policy routing can be disabled in kernel config if
you don't need it.

fib hash (linux default)

Fast - Yes

General purpose
Very integrated

33 linked hash tables
33->0 (default route)

Tables are linked i Linux
32->24->0 Normal for host

tables are resized.

Other activities
informal linux agenda

Ericsson is willing to open patent for Linux
Jamal have the contacs via Ericsson Montreal

DaveM has discussions with Washington university
about who is willing to grant another patent for use
with Linux

Discussed LC-trie with Alexey Kuznetsov.

LC-trie investigations. Got GPL from authors.

LC-trie

In theory variable key length, 32, 128 bits etc

Algo for dynamic trie written in Java. Memory
leak and stack handling were problems.

prefix matching based on fib sematic match

Cisco CEF has fixed 256 childs 8-8-8-8 or 16-8-8 (GSR)
LC-trie is child size is dynamic 2-12 bits seen

Is insert/delete performance good enough? Switch
tables after each insert/delete.

Infrastructure for test &
development

Handy well used flexible el cheapo lab

Preroute patches with Jamal at OLS 2004
to disable route hash and just do fib lookup

pktgen DoS, scripts w. routing table

Long-time Linux API work to prepare to
plugin new algos most from DaveM.

So much research
Still so little usable for Linux

Lab setup

=

Forwarding in parallel setup

Can use multiple CPU's on sender(s) and on
multiple CPU's on router.

rDoSor single flow(s)

All measurements measured in forwarding context
with 64 byte packets,

First take

Started with dyntree. Java. Jens had luckily ported
some Java programs before. 1:1 port

Memory leaks to kill us
Stack handling to almost kill us
Not so easy to interface the Linux API

Performance is hopeless bad

First shot/shock

Lookup Perromace in pps single flow

800

700 —

600 —

500 —

400 —

300 —

200 4

100 —

White route cache
Red fib hash

Blue fib trie

Profiles gave no clue...

Doubts after hard fight
Gave up LC-trie for now

fib hlist

fib hash?2

fib trie

classifier lookup?
unified lookup?

fib hlist
simplest routing algo
in linux ever

Idea was a tutorial

KISS

hlist with semantic match
Very fast with small tables
For embedded system etc?

fib hlist
performance

Main title

750
700
650
600 -
550

500
450 [0 dst cache

24

4007 . /DoS 6r
350 - []rDos 123kr
300
250
200
150
100

50 +

T
fib_hlist fib_hash

Note!
Zero for fib hlist :) Still decent many apps.

NEXT: fib hash2 huge hash
with prefix expansion

Vargese inspired, use what got

2724 hash lookup w. sorted hlist
Makes /24 entries of plens 1-23

/0 special case. Huge...
TABLE LOCAL with a few entries

Idea was to test performance
with the fastest algo we could think of.

Not for embedded system etc? :-)

Reduced it became fib hlist

fib hash2/route cache

750~
700 -
650 -
600 -
550~
500 -
450 -
400 -
350 -
300 -
250 -
200 -
150 -
100 -
50 -

compare

route cache FIB lookup FIB lookup DoS

[JRow 1

fib trie
implementation redesign

Needed lot of energi

Redesign of data structures
Remove all Java inheritage
Rewrite/remove stack use
Introduce parent-pointer
Use Linux list functions etc

Rework of lookup. Backtracking. Hasse Liss did clever
lookahead.

fib trie
beginning to see the light

How do we do a fair comparison?
Every paper has the fastest algo :)

Scientific inflation or marketing?

700
650
600
550
500
450
400
350
300
250
200
150
100

50

fib trie pertormance
comparison

forwarding kpps

Linux 2.6.16 1 CPU used(SMP) Opteron 1.6 GHz e1000

fib_hash fib_trie

Preroute pathes to disable route hash

[] dsh hash

B 5 r single flow
[]5rrDoS

[]123kr rDoS

LLOCAL/MAIN tables

fib lookup() in ip fib.h
Always looks up LOCAL table before MAIN

Extra lookup costs performance when not
to localhost.

We discussed this with Alexey...

LLOCAL/MAIN tables

Aver depth: 4.48
Max depth: ©
Leaves: 25
Internal nodes: 18

Aver depth: 3.22

Max depth: 7
Leaves: 158930
Internal nodes: 39440

fib trie vertication

C-program to compare LPM (longest prefix match)
with loaded table.

Linux kernel inclusion demanded verification technique
New netlink call to do fib lookup

fib lookup can done for userland app. Normally

only lookups are done kernel. (Softirq) This way

the “full” process insert/lookup/delete can be tested

and verified.

But forgot to test the fib semantic match fully. :)

struct toie {
stouct node *Froie; | Struct tnode {
#ifdef CONFIG_TP_FIBE_TRIE_STATS t_key key:
stoact trie use stats stats; unsigned long parent; e MULL.
#Hendif unsigned short pos:5;
int sizes unsigned short bits:5;
unsigned int revision: unsigned shoct full_children:
e unsigned short empt}r_chi]dl:en;
- stoact cou__lhead couas
= struct node *Fchild[0]; g MULL.
stouct node *child[1];
¢ - struct node *child[Z2];
StOuct trle_use stats { g
unsigned int gets;
unsigned int backtracks;
unsigned int semantic_match_passed; stouct tnode { —
unsigned int semantic_match_miss; t_key key:
unsigned int null_node_hit: unsigned long parent;
unsigned int resize_node_sl{ipped; ‘- unsigned short pos:S;
}: unsigned shoct bits:5;
unsigned short full_children;
unsigned short empty_children;
struct ccu__head couasg
stouct node *child[0];
; I:
o fib_find_nodef) AT
‘-'-. struct leaf { _— '__—“' T
Caang t_lcv_:ylccy; _...--""'--]eaf_get_infol[:l_-'- B
e Y-, unsigned long parent; s 5
e - stouct hlist bhead list; g | stouct leaf info { ez "
e i struct ccu_head couasg struct hlist_node hlist _—
5= stoact ccu_head couas

int p]cn;
g Stouct list head falhs

stoact fib_alias { stouct leafinfo {

struct list_head fa_lisr;
3 _ ISty | gy i IST, |egg— |

stoact fik_info *fa infos zttzzz :;ﬂgzzjerzfsh
ui fa_tos; int plen: B ’

g £ 5 e Tin
u a_type; - -|- = stouct list_head falh;
ug fa_scope: I
ug fa_ =rare: -

I

get_Ta head(]

struct fib_alias {

struct list_lhead fa_ list: | g to =
stouct Tib_info *fa info: = —

ul fa_tos: SR e s T R

ul fa_type:

ul fa_scope;

ul fa_ state:

Locking issues

Started with RW lock as fib hash
was “planned” implemenation for RCU

Read Copy Update. IBM research
donated by IBM. Paul McKenny author

RCU port by Stephen Hemminger/Paul
M. and me.

Lot's of disussions... Maybe contributed
to RCU too.

Locking issues

For read-mosty locks

RCU makes pointer updates atomic
Needs deferred deletion.

Read-side without locks
Writer functions need serialzation

Memory ordering different on CPU arch
Lot's of macros.

Performance RCU/RW-lock

Forwarding rDoS on DUAL 1.6 Ghz Opteron
rDoS on same /8 prefix.

250
225
200+
175+

150 -

I RW CPUO
[JRW CPU1
Il RCU CPUO
[JRCU CPUL

125

100

75

50

25

O,
Kpps

Performance
fib hash vs fib trie

Forwarding rDoS on DUAL 1.6 Ghz Opteron
Two CPU's aggregated. Most output on one NIC

300

275
250 +
225
200 —

175

150 [fib_trie RCU

125 +
100 +
75
50
25

Kpps

Test & Current use

Pktgen in Uppsala U. lab

1) rDoS at 2x680 kpps -- lookup
2) rDoS -- insert/replace/delete
3) rDoS dump

Linux kernel 2.6.14 (RCU variant)

Deploy at SLU core routers
Now in UU core routes

IBM/Austin working on a test setup
with several CPU's.

Other applications

Ipvo
Stateful lookup
?

Integration with filters etc

Current work
LC-trie for unified lookup
with 64/128/256 etc keys

Exanpl e above from |linux kernel experinents wth rDoS
Key is 128 bit src/dst/dport/sport/proto/ifce

trie:
Aver depth: 1. 30
Max dept h: 4
Leaves: 99190

| nt er nal nodes: 14356
1: 13154 2: 1196 3: 5 18: 1
Poi nters: 293276
Nul | ptrs: 179731
Total size: 5638 kB

Aver depth of 1.3 gives very fast | ookup.

